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The Coulomb interaction energy and the related force between two electric charges
at rest are fundamental in electrical theory. The electric-field energy density can
readily be formulated and is easily integrated throughout space. Its dependence upon
the separation distance of the two charges allows the force to be readily determined.
The spatial distribution of the energy is never considered except as a transitional for-
mulation in this integration exercise.

However, if one enquires into the distribution of the interaction component of the
field energy, which is the sole component affecting the Coulomb force, one is surprised
to find that, as viewed from either charge, this component is zero up to the separation
radius. This is such a simple result and is so easily demonstrated that it is surprising
not to find it in textbooks on electrostatics. For this reason, the author seeks to draw
attention to this aspect of electrostatic interaction. It may help in research into the
aws of electrodynamics, a subject of developing importance in view of the anomalous
accelerations found in interactions between electrons and ions (1-2).
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Fig. 1. — Coulomb interaction energy distribution

The Coulomb interaction energy associated with two charges is the total electric-
field energy arising throughout space from the combined action of the charges less the
sclf-energy components of both charges. The spatial energy distribution applicable
to two charges ¢ and ¢’ of like polarity is shown in fig. 1. The energy is summed in

() H. AsppEN: I.E.E.E. Trans. Plasma Sci., PS-5, 159 (1977).
(*) B. B. GoDFREY: I.E.E.E. Trans. Plasma Sci., PS-6, 256 (1978).
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coneentric shells centred on either charge. The energy dF in a shell of radius # and
thickness dz is zero up to the separation distance OP between the charges. Thereafter
it has a finite value which diminishes with increasing z in inverse square relation to x.
The expression dE/dx depicted in fig. 1, being a measure of the rate of change of
interaction energy with respect to x, is also a measure of the force acting on the charges
at the separation distance z.

Fig. 2. — Electric fields of charges ¢ and e,

To verify this relationship consider a charge ¢ in fig. 2 developing a radial electric
field V at P. Imagine then a charge ¢’ at  developing a radial electric field V' at P.
Write ¢ as the angle between V and V'. The electric-ficld energy density at P expressed
in a Gaussian system of units is found by dividing the square of the combined field
intensity by 8z. We are only interested in terms involving ¥ and V' together and
their cross-product in the squaring operation is 2V7V’' cos ¢. The interaction energy
density is therefore

1
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Consider an elemental volume at P bounded between spherical surfaces centered on O
and separated by the elemental radius d(OP) and further bounded by a solid angle %
centred on . This clemental volume is

P 2
(2) 17( 9 d(0OP).
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Multiplying (1) and (2) to find the energy element, we find that cos ¢ cancels and we
may write 7 as ¢/(OP)2 and V' as ¢'/(PQ)? to obtain

3) nee’ A(OP) )
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The term in P has cancelled and this further allows us to sum the energy over the
whole spherical shell by writing 5 as 4z, since n does not depend upon OP. The result
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is an elemental shell energy given by
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as depicted in fig. 1.

Formula (4) applies when OP is greater than O¢. In such a case the field vectors
¥V and V' act in unison, cos ¢ being everywhere positive. With OP less than 0Q the
solid angle from @ will intersect the spherical shell twice and though cos ¢ is always
positive as stated in (2) it will be negative or positive in (1) depending upon which
side of a plane through O we find Q. The result is the total cancellation of the interac-
tion energy component within a sphere of radius 0Q. This latter result is an essential
consequence of the result given in (4) because if there were extra interaction energy
within this sphere the Coulomb force deduced from (4) would not satisfy Coulomb’s
law.

The implications of this energy distribution are interesting. For example, imagine
that one charge is kept at rest and the other is allowed to move under the action of
the Coulomb force. The moving charge will draw on the interaction energy to sustain
its kinetic energy and its action in setting up a magnetic field. If the moving charge
is the seat of this self-energy associated with its own motion, then this energy is sup-
plied to the charge from an average distance exactly equal to that separating the two
charges. If the energy travels at the speed of light we may then except a retardation
equal to the time required for light to traverse the separation distance. However, there
are perplexing questions. Does the motion precede the energy transfer or follow it?
Why should energy be set in motion first, in one case, and why should the motion occur
at all in the other?

These are problems beyond the realm of the engineer concerned with clectrostatic
effects, but they are problems which must be answered if we are to understand electric
discharge processes better. Energy radiation by accelerated charge is beset by similar
problems. Some authors speak of pre-acceleration and others of post-acccleration (3).
However, a likely solution will be one connected with the so-called vacuum fluctua-
tions called into account in quantum electrodynamics. The author, mcanwhile, is
seeking to understand electrodynamic interaction by analysing the spatial distribution
of magnetic energy and connecting this with the law of electrodynamies analogous to
that of Coulomb for electrostatics. From this work it is becoming increasingly evident
that the established Lorentz formulation is a special case solution applicable to closed
cireuit problems but that a more general law is required for interactions between dis-
crete charges in motion, particularly when their masses are widely different.

(*) J. KAPUSTA: Nuovo Cimenlo, 31 B, 225 (1976).



