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Abstract
We propose a novel interpretation of space as a dynamic, rotational

medium, grounded in quaternionic formalism. By introducing a discrete
length scale δ > 0, we redefine the differential operators (divergence, curl,
and gradient) to preserve their geometric scaling even as δ → 0. This ap-
proach resolves limitations in the standard formalism, such as the loss of
chirality in the Laplacian, and provides a physically motivated, geomet-
rically rigorous framework for continuum field theory. The quaternionic
Laplacian is derived as a combination of these operators, forming the ba-
sis for a reformulated wave equation. These findings have profound im-
plications for electromagnetism, fluid dynamics, and wave propagation in
discretized systems.

1 Introduction
Space is traditionally viewed as a passive coordinate system, but recent devel-
opments in quaternionic formalism challenge this notion. This paper explores
the implications of treating space as a dynamic, rotational medium, where the
structure of the medium defines space itself. We present three key insights that
form the foundation of this interpretation:

• Redefinition of the differential operators with explicit geometric scaling.

• Introduction of a quaternionic Laplacian that preserves chirality.

• Reformulation of the wave equation to reflect the geometric structure of
space.

These insights provide a framework for understanding the emergent proper-
ties of mass, time, and space.
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2 The Unit Quaternion Versors
Quaternions were originally introduced by Hamilton as the quotient of two vec-
tors, and a versor was defined as the quotient of two unit vectors. In mathemat-
ics, a versor is a quaternion of norm one (a unit quaternion). Each versor has the
form:

q̂ = exp(ar⃗) = cos a + r⃗ sin a, r⃗2 = −1, a ∈ [0, π], (1)

where the condition r⃗2 = −1 means that r⃗ is a unit-length vector quater-
nion. Specifically, the first component of q̂ is the scalar part q0 = cos a, and
the last three components form a unit vector in 3D space. The corresponding
3-dimensional rotation has an angle 2a about the axis r⃗ in the axis-angle repre-
sentation.

In the special case where a = π/2 (a right angle), the versor reduces to:

q̂ = r⃗, (2)

and the resulting unit vector is termed a right versor.
The collection of versors, under quaternion multiplication, forms a group.

Geometrically, the set of versors corresponds to a 3-sphere in the 4-dimensional
quaternion algebra.

2.1 Limitations of the Traditional Versor Concept
While the traditional versor concept is useful for describing rotations, it is inher-
ently limited to the vector part of quaternions. This limitation arises from the
condition r⃗2 = −1, which restricts r⃗ to being a pure vector quaternion with no
scalar component. As a result:

• The versor concept does not fully utilize the 4D nature of quaternionic
space, as it excludes scalar components.

• It is restricted to representing 3D rotations and cannot describe transfor-
mations that involve both scalar and vector components.

• It does not account for geometric scaling, which is critical for embedding
physical dimensions into the quaternionic framework.
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2.2 Extending the Versor Concept
To address these limitations, we introduce a generalized unit quaternion that ex-
tends the traditional versor concept. Our unit quaternion includes both scalar and
vector components, allowing it to represent a broader range of transformations
in 4D space. It is defined as:

q̂u = qu + q1⃗i + q2⃗j + q3k⃗, (3)

where qu is the scalar component, and q⃗ = q1⃗i + q2⃗j + q3k⃗ is the vector
component. The unit quaternion satisfies the norm condition:

|q̂| =
√

q2
u + q2

1 + q2
2 + q2

3 = 1. (4)

This generalized unit quaternion extends the traditional versor concept by:

• Including scalar components, thereby fully utilizing the 4D nature of qua-
ternionic space.

• Representing transformations that involve both scalar and vector compo-
nents, beyond just 3D rotations.

• Providing a foundation for incorporating geometric scaling into the quater-
nionic framework.

2.3 Norm of the Unit Quaternion
A quaternion q̂ is defined as:

q̂ = q0 + q1⃗i + q2⃗j + q3k⃗, (5)

where q0 is the scalar part, and q⃗ = q1⃗i + q2⃗j + q3k⃗ is the vector part.
The norm of the quaternion is given by:

|q̂|2 = q2
0 + |q⃗|

2, (6)

where |q⃗|2 = q2
1 + q2

2 + q2
3.
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To satisfy the unit norm condition |q̂u| = 1, we impose the constraint:

|qu| = |q⃗u|. (7)

Under this constraint, the norm becomes:

|q̂u|
2 = q2

u + |q⃗u|
2 = 2q2

u = 1. (8)

Solving for qu and |q⃗u|, we find:

q̂u =
1
√

2
(qu + q⃗u) (9)

This ensures that the scalar and vector parts contribute equally to the norm
of the unit quaternion q̂u.

2.4 Differential Quaternion with Explicit Length Scale
To incorporate geometric scaling, we define the differential quaternion q̂δ with a
discrete length scale δ > 0:

q̂uδ = δ(q̂u),=
δ
√

2
(qu + q⃗u), |q̂dδ| = δ. (10)

Here, δ is a real number with units of length [m], representing an infinites-
imally small but nonzero length scale. This explicit length scale allows us to
analyze the geometric scaling of differential operators.

The differential quaternion satisfies the norm:

|q̂δ| =
√

(q0δ)2 + (q1δ)2 + (q2δ)2 + (q3δ)2 = δ. (11)

This ensures that the geometric properties of the quaternion are preserved,
even as δ→ 0.

Under the norm constraint |qu| = |q⃗u| =
1
√

2
, we found:

q̂u =
1
√

2
(qu + q⃗u) (12)

So:

ˆquδ = δq̂u =
δ
√

2
qu +

δ
√

2
q⃗u =

1
√

2
quδ +

1
√

2
q⃗uδ (13)
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3 The Quaternionic Differential Operators
The quaternionic differential operators form the foundation of this framework, al-
lowing us to express traditional differential operators as products with the quater-
nionic unit differential q̂δ. This approach leverages the three types of products
available in quaternionic algebra: the quaternionic (Hamilton) product, the dot
product, and the cross product. By introducing explicit scaling parameters for
each product, we define the gradient, divergence, and curl operators in a unified
quaternionic framework.

3.1 Defining the Differential Operators
The quaternionic unit differential q̂δ represents the differential itself in quater-
nionic form, incorporating the discrete length scale δ. Using this, we define the
differential operators as follows:

1. Quaternionic Gradient Operator: The gradient operator is defined using
the quaternionic (Hamilton) product:

∇̂q̂ = αq̂δq̂, (14)

where α is a geometric scaling parameter associated with the gradient. This
operator captures the rate of change of the quaternionic field q̂ in all spatial
directions.

2. Quaternionic Divergence Operator: The divergence operator is defined
using the dot product:

∇̂q̂ = βq̂δ · q̂, (15)

where β is a geometric scaling parameter associated with the divergence.
This operator measures the net flux of the quaternionic field q̂ per unit volume.

3. Quaternionic Curl Operator: The curl operator is defined using the cross
product:

∇̂q̂ = γq̂δ × q̂, (16)

where γ is a geometric scaling parameter associated with the curl. This op-
erator quantifies the circulation of the quaternionic field q̂ per unit area.
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4. The Quaternionic Laplacian: The full quaternionic Laplacian operator
is constructed by combining the gradient, divergence, and curl operators.

The quaternionic Laplacian operator is defined using the quaternionic unit
differential, with careful attention to the contributions of both scalar and vector
parts. The quaternionic Laplacian is defined as:

∆̂qq̂ = ( ˆquδq̂)2 (17)

Expanding the Laplacian, we obtain:

∆̂qq̂ = (q̂uδq̂)2 = q̂uδ( ˆquδ · q̂) + ˆquδ × ( ˆquδ × q̂) (18)

Here:

• The first term, ˆquδ( ˆquδ · q̂), represents the divergence contribution.

• The second term, ˆquδ × ( ˆquδ × q̂), represents the curl contribution.

Substituting the explicit form of ˆquδ and expanding:

∆̂qq̂ = (
1
√

2
quδ +

1
√

2
q⃗uδ)((

1
√

2
quδ +

1
√

2
q⃗uδ) · q̂) (19)

+ (
1
√

2
quδ +

1
√

2
q⃗uδ) × ((

1
√

2
quδ +

1
√

2
q⃗uδ) × q̂) (20)

Since the scalar part does not contribute to the cross product, and the cross
product does not contribute to the dot product, we can simplify the expression
to:

∆̂qq̂ =
1
2

(
quδ(quδ · q̂) + q⃗uδ × q⃗uδ × q̂

)
(21)

This expansion naturally results in a Helmholtz decomposition of the field q̂
into its divergence and curl components, with the factor 1

2 ensuring equal contri-
butions from scalar and vector parts and adherance to the norm.
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3.2 Geometric Interpretation
The quaternionic differential operators provide a unified geometric interpretation
of traditional differential operators:

• The gradient operator captures the rate of change of a quaternionic field
using the quaternionic product.

• The divergence operator measures the net flux per unit volume using the
dot product.

• The curl operator quantifies circulation per unit area using the cross prod-
uct.

By incorporating the discrete length scale δ, these operators preserve geomet-
ric scaling and provide a consistent framework for both continuous and discrete
formulations.

4 Scaling of the Differential Operators

4.1 Gradient
The gradient measures the spatial change of a scalar field or the real part of a
quaternionic field. Unlike with the divergence and curl operators, there is no
intrinsic length scale associated with the gradient operator itself.

However, when we consider the how space is discretized in numerical sim-
ulations, where a staggered Yee grid is used, scalar fields are defined at cell
centers, and vector fields are defined at cell faces. The effective length scale for
the gradient is then the distance between adjacent cell centers, which is 2δ. Thus,
the gradient scales as:

∇ϕ ∼
1
2δ
. (22)

So:
α =

1
2δ
. (23)
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4.2 Divergence
The divergence of a vector field F(x) at a point x0 is defined as the limit of the
ratio of the surface integral of F out of the closed surface of a volume V enclosing
x0 to the volume of V, as V shrinks to zero

div F|x0 = lim
V→0

1
|V |

	
S (V)

F · n̂ dS (24)

where |V | is the volume of V, S(V) is the boundary of V, and n̂ is the outward
unit normal to that surface. The result, div F, is a scalar function of x.

The divergence measures flux per unit volume. For a spherical volume of
radius δ, the surface area is 4πδ2, and the volume is 4

3πδ
3. Thus, the divergence

scales as:

∇ · v⃗ ∼
3
δ
. (25)

So:

β =
3
δ
. (26)

4.3 Curl
The curl of a vector field F at a point p is defined as:

∇ × F(p) · û def
= lim

A→0

1
|A|

∮
C(p)

F · dr (27)

calculated along the boundary C of an infinitesimal area A containing point
p, with |A| denoting the magnitude of the area. This expression defines the com-
ponent of the curl of F along the direction û, which is the unit normal vector of
the surface bounded by C, oriented according to the right-hand rule.

The curl measures the circulation per unit area. By Stokes’ theorem, the line
integral of a vector field over a closed loop is equal to the surface integral of its
curl over the area it encloses:∮

C
F · dr =

"
A
(∇ × F) · dA (28)
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For a circular area of radius δ, the circulation becomes:

Γ =

∮
C

v⃗ · dr = |⃗v| · (2πδ) (29)

and the area is |A| = πδ2, giving the curl magnitude as:

|∇ × v⃗| = lim
δ→0

Γ

πδ2 = lim
δ→0

2π|⃗v|
δ

(30)

However, this diverges as δ → 0, which is why we shift perspective from
pointwise curl to quantized circulation. In systems with topological constraints
(e.g., vortex quantization), the total circulation becomes the fundamental quan-
tity:

Γ =

∮
C

v⃗ · dr = 2πk (31)

where k is the circulation constant of the medium. This shows that rotation
in the medium is inherently tied to closed loops, and that 2π is the fundamental
unit of angular circulation.

Thus:

γ = 2π (32)

5 The Quaternionic Laplacian
The Hilbert Book Model defines three nabla operators: the spatial nabla ∇spatial,
the quaternionic nabla ∇q, and the Dirac nabla ∇D. While these operators are
mathematically consistent, they introduce limitations that undermine the full po-
tential of quaternionic formalism.

5.1 Spatial Nabla
The spatial nabla is defined as:

∇spatial = i⃗
∂

∂x
+ j⃗
∂

∂y
+ k⃗
∂

∂z
. (33)
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This operator is equivalent to the standard gradient operator in vector calculus
and does not include a temporal component. As a result, it cannot fully describe
time-dependent phenomena.

5.2 Quaternionic Nabla
The quaternionic nabla is defined as:

∇q =
∂

∂τ
+ i⃗
∂

∂x
+ j⃗
∂

∂y
+ k⃗
∂

∂z
. (34)

This operator introduces a temporal component ∂
∂τ

, allowing it to describe
time evolution. However, it does not distinguish between scalar and vector com-
ponents, limiting its ability to separate the gradient-divergence and curl compo-
nents of the Helmholtz decomposition.

5.3 Dirac Nabla
The Dirac nabla is defined as:

∇D =
∂

∂τ
+ I(⃗i

∂

∂x
+ j⃗
∂

∂y
+ k⃗
∂

∂z
), (35)

where I is the standard complex imaginary unit. This operator introduces a
complex number into quaternionic formalism, effectively reducing the dimen-
sionality of the problem to 2D. This contradicts the fundamental goal of quater-
nionic formalism, which is to work in full 4D space.

5.4 Summary of Limitations
The use of complex numbers in quaternionic formalism often reduces the dimen-
sionality of the problem, effectively projecting parts of the equations onto a 2D
plane. For example:

• In Feynman’s explanation of wave interference, complex numbers are used
to describe the rotation of a crankshaft in 2D space.
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• In the Dirac nabla operator, the imaginary unit I is introduced as a complex
number rather than a quaternionic unit.

This approach undermines the full 4D nature of quaternionic space and fails
to separate scalar and vector components effectively.

6 Modified Wave Equation
Using the quaternionic Laplacian, we propose the following wave equation:

d2v̂
dt2 = −

κ

ρ
∇(∇ · v̂) +

(
η

ρ

)2

∇ × ∇ × ∇ × v̂. (36)

This equation reflects the rotational nature of space and provides a framework
for understanding wave propagation in discretized systems.

7 Implications and Applications

7.1 Electromagnetism and Fluid Dynamics
The modified operators and Laplacian provide new insights into electromag-
netism in media, viscous fluid dynamics, and wave propagation.

7.2 Discrete Formulations
The geometric scaling of the operators ensures consistency with finite difference
methods, such as the Yee grid, and improves numerical stability.

8 Conclusion
We have proposed a quaternionic framework for redefining the Laplacian and
differential operators, preserving geometric scaling and chirality. This approach
resolves limitations in the standard formalism and provides a physically moti-
vated foundation for continuum field theory.
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9 Nomenclature
This section defines the notation used throughout the document for quaternions,
vectors, scalars, and related quantities. Consistent notation ensures clarity and
avoids ambiguity.

9.1 Quaternions
• q̂: General quaternion, consisting of a scalar part and a vector part.

• q̂u: Full quaternion unit, satisfying |q̂u| = 1.

• q̂uδ: Full quaternionic unit differential, equal to δq̂u.

9.2 Vectors
• v⃗: General vector field.

• q⃗u: Vector part of the quaternion unit.

• q⃗uδ: Vector unit differential, equal to δ
√

2
q⃗u.

9.3 Scalars
• qu: Scalar part of the quaternion unit, equal to q0.

• quδ: Scalar unit differential, equal to δ
√

2
qu.

• ν: General scalar field.

9.4 Operators
• ∇: Standard gradient operator in vector calculus.

• ∆: Standard Laplacian operator in vector calculus.

• ∆q: Quaternionic Laplacian operator.

• ∆s: Scalar Laplacian operator.
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9.5 Units of Measurement
All quantities are expressed in terms of the elemental units [kg], [m], and [s].
Derived units are included for clarity where appropriate:

• Force: [N] = [kg · m/s2].

• Energy: [J] = [kg · m2/s2].

• Charge: [C].
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