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Abstract: As was shown in a prior paper [R. R. Hatch, Phys. Essays 23, 540 (2010)], the

conservation of momentum together with the increase of inertial mass with velocity requires that

the orbit of a spacecraft around the earth be contracted in the along-velocity direction of the earth’s

orbit around the sun. This length contraction effect combined with the effects of speed upon the

clock rate results in an apparent Lorentz transformation between the earth’s frame and the solar

barycentric frame. However, the conservation of energy requires that some additional forces be

present which were not addressed in that paper. In the current paper, the forces are included in the

analysis. Gravitomagnetic (referred to herein as kinetic) forces are developed which are consistent

with both energy and momentum conservation. It is shown that these forces are consistent with a

length contracted orbit, which because of anisotropic light velocity appears as a circular orbit

whose orbital frequency is decreased just as the frequency of electromagnetic radiation is decreased

with the velocity of emitting atoms. The kinetic force effects are considered in two orthogonal

planes, in the plane normal to the earth’s orbital velocity and in a plane containing earth’s orbital

velocity. The application to an arbitrary orbital plane is simply the sine/cosine combination of the

two planes. VC 2013 Physics Essays Publication. [http://dx.doi.org/10.4006/0836-1398-26.2.159]

Résumé: Comme démontré dans un article précédent [R. R. Hatch, Phys. Essays 23, 540 (2010)],

la conservation du mouvement lors de l’augmentation de la masse inertielle et de la vitesse requiert

que l’orbite d’un satellite autour de la Terre soit contractée dans la même direction que la vitesse

de l’orbite terrestre autour du Soleil. L’action-effet de cette contraction, combinée avec les effets

de la vitesse sur le taux de changement de l’horloge, résulte en une transformation de Lorentz entre

le repère terrestre et le système de référence barycentrique solaire. Cependant, des forces gravito-

magnétiques additionnelles sont requises pour assurer la conservation de l’énergie et du mouve-

ment. Ces forces, qui n’ont pas été mentionnées dans l’article précédent, sont expliquées dans cet

article. Ces forces, appelées forces cinétiques dans cet article, sont développées de façon consis-

tante avec la conservation du mouvement et de l’énergie. Il est démontré que ces forces sont consis-

tantes avec la durée de la contraction de l’orbite. À cause de la vitesse anisotropique de la lumière,

ces forces cinétiques ont une orbite circulaire dont la diminution de fréquence s’apparente à la dim-

inution de la radiation électro-magnétique due à la vitesse d’émission des atomes. L’action-effet de

ces forces cinétiques est décrite sur deux plans orthogonaux: (1) un plan perpendiculaire à la vitesse

de l’orbite terrestre; et (2) un plan parallèle à la vitesse orbitale terrestre. L’application à un plan

arbitraire est tout simplement une projection sinus-cosinus de ces deux plans.
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Special Relativity; General Relativity.

I. INTRODUCTION

In a prior paper,1 the Global Positioning System (GPS)

was analyzed to see how it would work if it were trans-

formed into the solar barycentric frame from the ECI (earth-

centered inertial) frame. It was shown that an apparent rela-

tivity of gravitational effects exists in the ECI frame relative

to the solar frame. However, the results in that paper only

addressed the kinematic effects of conservation of momen-

tum. Furthermore, when that momentum is conserved by

changing the velocity to compensate for an inertial mass

change, a force is required or the energy will not be con-

served. The radial gravitational force which caused the

inertial velocity direction to change and thereby the inertial

mass to change is insufficient to conserve the energy without

a torque force. The principle intent of this paper is to show

that there are gravitational and kinetic (gravitomagnetic)

forces which are consistent with the conservation of both

momentum and energy.

However, before plunging into that task, it is desirable to

summarize and review some of the results from other prior

papers in order to build upon them within this paper. That

background constitutes the next section below. In the third

section, a specific model of the kinetic (gravitomagnetic)

force is introduced which is capable of exerting a torque. In

the fourth and longest section, a detailed analysis of the nec-

essary forces will be presented using two moving gravita-

tional clocks. The first of the two clocks consists of a smalla)rhatch@navcomtech.com

0836-1398/2013/26(2)/159/15/$25.00 VC 2013 Physics Essays Publication159

PHYSICS ESSAYS 26, 2 (2013)



mass in a circular orbit around a large mass. The analysis

shows that there is an apparent relativity when this gravita-

tional clock is given a translational velocity orthogonal to

the plane of the orbiting small mass. The second gravita-

tional clock is the same, except the translational velocity is

imparted within the plane of the orbiting small mass. Obvi-

ously, the general gravitational clock is simply a sine/cosine

combination of the two. The final section presents the con-

clusions and discusses further work to be addressed in the

future.

II. BACKGROUND

In this section, two concepts which I consider very im-

portant are reviewed. The first involves the development of

what I refer to as the “apparent Lorentz transformation”

(ALT). It is so important that I have reviewed it in multiple

papers.1–5 It was first presented in a 2004 paper.2 I present it

here again along with some reasons as to why I consider it so

important.

The second concept which is reviewed in this section is

the source of the gravitational force and the partitioning of

energy within a moving particle. This gravitational concept

and source of frequency change with speed and gravitational

potential was first presented in a 2007 paper.4

A. The logic of the ALT

Clock rate changes and longitudinal length contractions

with motion together with an origin reset are sufficient to

result in a scale change mapping [Selleri transformation

(ST)] as developed below.

1. Clocks—their rate and time reading

It is important to recognize some important facts about

clock time and clock rates. An idealized clock will be

assumed, i.e., one that, if stationary, runs at a specific fre-

quency without any disturbing errors. It is also assumed

(since clocks are specific physical objects) that they run at

one specific rate independent of the frame and velocity in

which they are assumed to reside. However, clock readings

themselves can be biased by simply setting their initial read-

ing. And in some circumstances, e.g., the GPS the rate at

which they run can be purposefully offset so that they run at

a rate equivalent to an unmodified clock not moving at the

same speed and/or not at the same gravitational potential.

It is well known that clocks run slower when they are

moving and that they run faster when they are higher in a

gravitational potential. The suggested mechanism for this

frequency dependence upon speed and gravitational potential

(internal structural energy) is given in part B below as part

of the discussion of the gravitational effects.

But if energy is always conserved (assumed true) and

clocks run slower the lower their internal energy, one is lead

inevitably to the conclusion that an absolute frame must exist

in which stationary clocks run at their fastest rate. As I have

argued in prior papers, because an apparent relativity does

exists, no way has been found yet to identify unambiguously

which specific frame is the absolute frame. It is my assump-

tion that the most likely absolute frame is the frame defined

by an isotropic temperature of the cosmic background radia-

tion (CBR). It is also my assumption that this state of affairs

will not last many more years. Increasingly, very small sys-

tematic errors are showing up in unusual situations, e.g., the

anomalous acceleration which occurs when the earth is used

as a gravity assist to speed up (or slow down) the orbits of

interplanetary probes. I believe that some of these anomalous

situations may in the near future be explained by small

higher-order effects resulting from residual absolute frame

phenomena.

2. Longitudinal length contraction—the evidence

Length contraction was first suggested to explain why

the Michelson–Morley experiment (MME) was unable to

detect any interference fringe shifts in light paths perpendic-

ular and aligned with the orbital velocity of the earth. The

MME remains one of the most powerful evidences for length

contraction in the direction of motion, though undoubtedly

there will always be those who suggest an alternate explana-

tion. However, the increase in inertial mass, together with

the conservation of momentum, argues1 for the same amount

of length contraction of an orbiting mass in a gravitational

field. Thus, longitudinal length contraction is supported by

both electromagnetic evidence and mechanical evidence.

3. The ST

With clock slowing and longitudinal length contraction

used to define the units of the moving frame, one can de-

velop a transformation from an absolute frame (or a frame

one assumes is absolute) to a frame moving with respect to

it. In fact, the first to specify such a transformation was Tan-

gherlini.6 However, because Selleri7 developed the transfor-

mation, composite transformations and their inverses in

detail, I prefer to refer to it as the ST. Selleri himself referred

to the transformation as an “inertial transformation.” The ST

from the stationary frame to the moving frame is given by

t ¼ T=c and ðf ¼ cFÞ; (1)

x ¼ cðX � VTÞ ¼ cðX � x0Þ; (2)

y ¼ Y; (3)

z ¼ Z; (4)

where the scale factor is defined as

c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2=c2

p
: (5)

Note that this mapping is the mapping of measurement val-

ues between the frames, i.e., they express the same physical

values in the new units of the moving frame and adjusted to

the new origin of that moving frame. The small letters desig-

nate the values in the moving frame and the capital letters in

the absolute frame. X and x are in the direction of the veloc-

ity. Equation (1) tells us that the measured time in the mov-

ing frame will be smaller due to the larger units of time in

the moving frame caused by the slower running clocks, i.e.,

decreased frequency. Equations (3) and (4) show that the
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y and z measured values are identical to the Y and Z meas-

ured values.

It is also important to note that the larger units of time

and the shorter (contracted) units of length cause velocities

in the X direction to map into a larger values of velocity in

the moving frame. Thus, the measured x velocity relative to

the origin of the moving axis is actually a larger velocity if

expressed in the smaller units of distance and time of the

moving frame

_x ¼ c2ð _X � VÞ: (6)

However, only the differing time units cause the apparent

velocities in the orthogonal directions to be larger

_y ¼ c _Y; (7)

_z ¼ c _Z: (8)

4. The result is the ALT

Following the procedure given in the prior papers, it is

shown that a simple clock bias as a function of the along-

velocity position is sufficient to convert the ST into an ALT.

Equation (2) which maps the X position into the moving

frame x position is actually identical with the same mapping

given by the Lorentz transformation (LT). However, the LT

for the time is different from Eq. (1) and is given by

t0 ¼ cðT � VX=c2Þ: (9)

The prime is used to distinguish Lorentz time mapping from

the Selleri time mapping.

Subtracting Eq. (2) from Eq. (9) gives

Dt ¼ t0 � t ¼ ðc� 1=cÞT � cVX=c2: (10)

Simplifying this expression gives

Dt ¼ ð1� 1=c2ÞcT � cVX=c2 ¼ � V

c2
cðX � VTÞ: (11)

Now substituting Eq. (2) into Eq. (11) gives

Dt ¼ �Vx

c2
: (12)

This shows the very important result that a clock bias as a

function of position is all that is required to convert the ST

into an ALT.

Both the Einstein convention for setting remote clocks by

assuming the transit time is one-half the round trip time of an

electromagnetic signal and also slow clock transport automati-

cally introduce a clock bias as a function of position as given

in Eq. (12). But, this raises an important question. Why call the

transformation an ALT rather than simply an LT? There are

several reasons for distinguishing the ALT from the LT as

used in the special theory of relativity (SRT). But before

addressing a list of the differences, I need to acknowledge that

some will simply claim that the ALT is just a different inter-

pretation of the same mathematical result. While it is true that

the mathematics of the transformations is indeed identical, the

physical interpretation is dramatically different. The LT fails

to distinguish between mathematical invariance and physical

invariance. The ALT acknowledges the mathematical invari-

ance but not the physical invariance. Only by changing the

name of the transformation can that difference be kept in view.

A list of physical differences must include the following:

(1) In many instances, the transformation from one frame to

another clearly involves the transformation between one

frame (call it the “parent” frame) and a second frame

imbedded with that “parent” frame (call it the “child”

frame). For example, the sun is the parent frame of the

earth and the earth the parent frame of the moon. The

galactic frame is the parent frame of the solar frame and

the CBR frame is most likely the parent frame of the ga-

lactic frame. The LT does not distinguish the frame hier-

archies and therefore cannot properly account for the

embedded scale changes which are implied by them.

The ALT as formulated above shows that when trans-

forming from one “parent” frame to “child” frame there

is a velocity scaling [see discussion about Eq. (6) above]

that is hidden in the LT. An example of this was shown

in the prior paper5 where the true speed of light, even

though measured as an unchanged value, is actually ani-

sotropic and is measured in different units. In the case of

light the mathematical speed is invariant, but the physi-

cal speed is slower in the “child” frame than it is in the

“parent” frame. When interframe measurements are

made, the blind use of the LT will lead to physically

inaccurate conclusions while breaking the ALT down

into its component ST and clock bias components will

lead to the correct physics. As shown in the immediate

predecessor of this paper1 the increase of inertial mass

with mechanical velocity together with the conservation

of momentum causes the ratio of mechanical velocity to

the speed of light to be invariant with the choice of

frame. Thus, the same clock bias as a function of posi-

tion which leads to isotropic light also normalizes me-

chanical momentum for the chosen frame.

(2) When the transformation is from the child frame to the

parent frame, the clock bias must be removed first and

then the inverse ST applied. The transformation so

obtained is the reverse ALT which looks identical to the

reverse LT but includes a scaling (hidden in the LT) which

is the inverse of the scaling of the forward transformation.

(3) Perhaps of most importance, the ALT differs from the ST

in that it clarifies the requirement for a specific mecha-

nism or source for the clock bias as a function of position.

In the SRT, it is generally assumed that if a frame under-

goes linear acceleration the speed of light is automatically

maintained at the value of c as the speed of the frame is

changed. This claim is vividly illustrated by the following

quote from Goldstein’s textbook on classical mechanics:8

Consider a particle moving in the laboratory

system with a velocity v that is not constant. Since

the system in which the particle is at rest is

accelerated with respect to the laboratory, the two

systems should not be connected by a Lorentz
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transformation. We can circumvent this difficulty

by a frequently used stratagem (elevated by some to

the status of an additional postulate of relativity).

We imagine an infinity of inertial systems moving

uniformly relative to the laboratory system, one of

which instantaneously matches the velocity of the

particle. The particle is thus instantaneously at rest

in an inertial system that can be connected to the

laboratory system by a Lorentz transformation. It is

assumed that this Lorentz transformation will also

describe the properties of the particle and its true

rest system as seen from the laboratory system.

This quote vividly illustrates the assumption that the

speed of light remains at c in an accelerated frame. Misner

et al.9 and Ashby and Spilker10 make equivalent statements.

In fact, this assumption is critical to the validity of claims for

the application of infinitesimal LTs. Such infinitesimal LTs

are used, for example, in the standard explanation of Thomas

precession as is illustrated by the context of the Goldstein

quote above. Alternatively, Goy11 makes a more limited

(and correct) claim. Specifically, he claims:

The “clock hypothesis” states that the rate of an

ideal clock accelerated relative to an inertial frame

is identical to the rate of a similar clock in the

instantaneously comoving inertial frame…the rate
of clocks is not influenced by accelerations per se.
(italics mine)

If the speed of light is maintained as c while acceleration is

occurring then separated clocks would have to run at different

rates as a function of the acceleration. This contradicts abundant

evidence that acceleration does not itself affect clock rates. By

contrast, the ALT makes clear that a linear acceleration (at least

an acceleration not caused by gravitational action) would

require that clocks within the accelerated frame be resynchron-

ized else they would not measure the speed of light as an iso-

tropic value of c.

(4) The need for a mechanism to generate the appropriate

clock bias to obtain the ALT was first pointed out in

another prior paper2 where it was shown that the combined

velocity of a clock on the spinning earth (or of a clock on

an orbiting GPS satellite) together with the earth’s orbital

velocity causes a clock rate which integrates into exactly
the clock bias as a function of along-velocity position

needed to convert the ST into the ALT. Furthermore, the

along-velocity direction of the clock bias is rotated exactly
into the orbital direction of the earth due to the integral of

the clock frequency effects caused by the gradient of the

solar gravitational potential. (The same gradient of the so-

lar potential is the source of the force which causes the or-

bital direction of the earth’s velocity to change.) The

standard Very Long Baseline Interferometry (VLBI)

mapping between the solar frame and the earth’s frame

provides evidence that SRT simply assumes that the clock

bias is (magically) generated as the earth is accelerated.

This is confirmed by the fact that the hidden scale factors

are not applied in the VLBI mappings between the earth

and the sun.

B. Relationships between gravity, frequency,
and energy

The development of a new theory of gravity, as shown in

a previous paper,4 was the logical result of correcting a com-

mon error associated with the general theory of relativity.

The error involves the frequency of radiation as it “falls” in a

gravitational potential.

1. Gravitational potential energy increase 5>
structural energy increase 5> frequency increase

In illustrating the equivalence principle, both Einstein12

and Feynman13 use the example of a cycle where mass is

moved up (or down) in a gravitational field and the cycle

completed by converting that mass (or some of it) into elec-

tromagnetic energy beamed down (or up) and then converted

back into mass. The conservation of energy is then imposed

by both to argue that the frequency must change as it moves

down (or up) in the cycle to equal the change in the gravita-

tional energy during the mechanical half of the cycle. But

that argument is negated by direct evidence that the fre-

quency in transit does not change. Instead the frequency

emitted and absorbed is a function of the gravitational poten-

tial, i.e., the change in frequency is only an apparent effect

caused by the use of a different clock frequency used in

measuring the received frequency.

Clock frequency as a function of the potential is directly

proven by evidence from the GPS, by the Navy’s former

TRANSIT system and by direct monitoring by millisecond

pulsars. Because this is critical to the subsequent arguments,

it is worth a more detailed explanation. In the GPS, two

types of measurements are available. The code measurement

is based upon the transit time of a known modulation pattern

from satellite to receiver. When multiplied by the speed of

light it gives a measure of the range (typically biased by

local receiver error which is made part of the solution). The

carrier phase measurement is the integral of the transmitted

frequency minus receiver frequency, i.e., a frequency differ-

ence which includes the Doppler effect, and is thus a mea-

sure of the (biased) change in range when multiplied by the

speed of light. The code measurement is subject to much

more noise than the carrier phase measurement. It is com-

mon practice to smooth the code measurement with the car-

rier phase measurement to reduce the noise. This process,

often referred to as a Hatch filter, has the advantage of aver-

aging the difference between the code measurement and the

carrier phase measurement to get a very accurate initial

range. The range at any time point is then obtained by adding

the current carrier phase measurement back on to this aver-

aged result. The point of the description above is that if the

frequency is increased in transit, it would result in a slightly

longer result for the code measurement, but it would affect

the carrier phase measurement by making it a continually

higher frequency and would cause the range change to

(falsely) become larger and larger as the effect is integrated.

Thus if the frequency increased in transit, the Hatch filter

used in a multitude of GPS receivers would not work prop-

erly. Instead of increasing the accuracy, it would decrease

the positioning and time recovery accuracy.
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But if the frequency of electromagnetic radiation is con-

served as it falls or rises in a gravitational potential then the

energy of that radiation is also conserved and the Einstein/

Feynman arguments can be turned upside down. The direct

implication is that the mechanical energy of mass moving up

or down in a gravitational potential can only be conserved if

the structural (gravitational or rest mass) energy is the source

of the kinetic energy change such that the total energy of the

mass is unchanged as it rises or falls in a gravitational poten-

tial. The emitted radiation from an atom is a function of the

structural energy. This dependence is shown by the radiation

emitted from a stationary atom (or clock running rate) at

different gravitational potentials.

2. Kinetic energy increase 5> structural energy
decrease 5> frequency decrease

Once the clear-cut dependence of clock rate upon the

gravitational potential energy is shown, it is easy to infer that

the decrease in clock frequency with motion arises due to a

similar decrease in the structural energy with motion. But the

total energy increases as the kinetic energy of motion is

increased. Thus, a structural energy decrease with motion

even as the total energy increases must imply that there is a

hidden component of kinetic energy such that the total kinetic

energy is twice the amount normally ascribed to it. The con-

clusion is that gravitational potential directly affects the struc-

tural energy and with increased potential the structural energy

is increased and the frequency of emission (or absorption is

increased. But with motion, there is a decrease in the struc-

tural energy and a decrease in the emitted frequency. The

decreased structural energy supplies a hidden component of

kinetic energy such that it is twice the classical amount.

The effect of kinetic energy and potential energy on the

frequency (and implied effect on the structural energy) is

vividly illustrated by the GPS clocks in eccentric orbit. At

perigee, the clocks are at a lower potential energy and run

slower than their average orbital rate. But they are also mov-

ing at a higher speed (kinetic energy) and also run slower

due to that speed. The two effects are precisely equal imply-

ing precisely the same change in the structural energy even

as some of the potential energy is converted into an equal

amount of kinetic energy. The clear implication is as stated

above motion converts structural energy into kinetic energy

and the structural energy determines the emitted or absorbed

frequency.

In similar fashion, the spin (kinetic energy of rotation) of

the earth causes the earth to bulge out at the equator so that

clocks at the equator have a higher gravitational potential

energy (structural energy). But the decrease in structural

energy due to the spin motion is exactly canceled out by the

increase in structural energy due to the gravitational poten-

tial. The result is that the structural energy and frequency of

clocks upon the spinning earth are independent of the lati-

tude (spin rate) at which they are located.

3. Conservation of energy between frames

Within SRT, it is claimed that a particular combination

of energy and momentum is an invariant within the LT.

Specifically, it is claimed that the rest mass energy squared

is equal to the total energy squared minus the product of the

momentum squared times the speed of light squared, i.e.

ðm0c2Þ2 ¼ E2 � ðmiVcÞ2: (13)

In this equation, m0 is the rest mass in the reference frame

and mi is the increased (by the gravitational scale factor) in-

ertial mass which results in the reference frame due to the

movement. Equation (13) is equivalent to claiming that the

rest mass energy is conserved between the two frames and

the rest mass energy is specifically said to be invariant in

many textbooks on SRT. But the only reason it appears to be

invariant is the presence of a hidden scale factor, i.e., it is

numerically invariant but cannot be physically invariant.

Making use of Eq. (5) for the velocity scale factor and solv-

ing Eq. (13) for the total energy squared give

E2 ¼ m2
0c4 þ m2

i V2c2 ¼ m2
i

c2
c4 þ m2

i V2c2 ¼ m2
i c4: (14)

Dividing this equation by the energy, E, gives

E ¼ mic
2 ¼ m2

0

mi
c2 þ miV

2 ¼ mgc2 þ miV
2: (15)

In these two equations, the inertial mass is increased and the

gravitational or structural mass (subscript g) is decreased by

the velocity scale factor. This energy equation results

directly from fundamental experimental data including the

experimental evidence cited in Section II above. It indicates

that the structural mass in a moving frame is decreased and

that there is a hidden component of the kinetic energy, which

counteracts the decreased energy of the structural mass. That

hidden component causes the real kinetic energy to be dou-

ble the amount classically assigned to it.

While Eqs. (13) through (15) represent true relationships

between the total energy, the momentum, and the structural

mass energy in a given frame, it is clearly illogical that the

conserved property between frames be the physical structural

energy. (It is no longer appropriate to call it rest mass energy

since it changes with velocity.) For the conservation of

energy, the total energy in the moving frame should be equal

to the total energy in the reference (stationary or absolute)

frame minus the kinetic energy of the moving frame, since

the kinetic energy is reset to zero in the moving frame. From

Eq. (15), the total energy minus the kinetic energy in the

moving frame is given by

E�K ¼ mic
2�miV

2 ¼ mic
2=c2 ¼ mgc2 ¼ m0c2=c: (16)

What Eq. (16) indicates is that, similar to the LT which

ignores the differences between the absolute or reference

frame units and the moving frames units, holding Eq. (13)

physically invariant ignores the scaling of the rest mass as

indicated by Eq. (16). In a moving (child) frame, the correct

physical energy is obtained by decreasing the apparent rest

mass by the inverse of the velocity scale factor and decreasing

the inertial mass by the inverse square of the gravitational

scale factor such that the two values are equal to the reduced
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structural mass. This restores the apparent equivalence

between the inertial and the structural mass in the local mov-

ing frame and with the change in the measurement units

causes the Eq. (13) to be numerically invariant across frames

even though it is not physically invariant. The difference

between the numerical invariance and the physical invariance

becomes extremely important for measurements made across

the frames, i.e., to measurements involving the “parent” frame

made within the “child” frame.

III. TORQUE FORCE REQUIRED FOR
CONSERVATION OF ENERGY

In the previous paper,1 it was shown that the conserva-

tion of momentum together with the increase of inertial mass

with velocity requires that the orbit of a spacecraft in orbit

around the earth (which is in orbit about the sun) be con-

tracted in the along-velocity direction of the earth’s orbit

around the sun. That contraction together with clock slowing

with velocity results in an ST. When clock biases as a func-

tion of along-track position (either automatically generated

clock biases or biases generated by clock synchronization

schemes) are added to the ST, an ALT results.

But some significant problems remain unresolved

regarding the contracted orbits of earth satellites. First, the

conservation of momentum in the solar frame requires that

the speed in the orbit relative to the earth varies in a cyclic

fashion, being least when the orbital velocity aligns with the

earth’s orbital velocity and being greatest when the orbital

velocity opposes the earth’s orbital velocity. In addition,

both this varying speed and a flattened orbit require that a

torque force must be felt by the orbiting mass since such an

orbit cannot be maintained via a standard radial gravitational

force alone. In addition, an extra force is required to satisfy

the energy transfer between the orbiting mass and the earth

as the speed of the orbiting mass varies.

Fortunately, there is precedent for a force associated

with gravity caused by the common motion of masses. This

force is often referred to as the gravitomagnetic14,15 force in

analogy to the magnetic force associated with the motion of

electrical charges. Since the gravitomagnetic force arises due

to the motion of masses, it seems appropriate to refer to it

more simply as a kinetic force. The analogy is that just as a

magnetic force can be generated by the motion of electrical

charges, a kinetic force can be generated by the motion of

masses. But a simple analogy to the magnetic force as com-

monly understood is insufficient to solve the problem.

There are three alternative forms of the magnetic force

laws, which have been described in the literature. The three

laws are the Biot–Savart law, the Ampere law, and the Whit-

taker law. The complaint made by many regarding the Biot–

Savart law is that it does not conserve momentum since the

force exerted on the two current elements under considera-

tion is not equal and opposite. The Ampere law does con-

serve momentum by ensuring that the two forces are equal

and opposite; however, it requires that the force be along the

line joining the two current elements. Thus, the kinetic ver-

sion of the Ampere law does not allow torque forces and

therefore cannot be the form needed to conserve momentum

and energy for the flattened satellite orbit around a moving

earth. The Whittaker16 law is a modified form of the Ampere

law which allows for torques. Thus, it has the form needed

for our task—showing that a kinetic force may be capable of

conserving momentum consistent with the conservation of

energy in the solar frame.

Note in passing that all three laws become equivalent

when static, closed loop currents are considered. The differ-

ences between the force laws drop out when the integral of

the force is taken around closed circuits.

Originally, it was the intent to devote an entire section to

a discussion of magnetic forces and to give a detailed argu-

ment as to why the particular Whittaker force variant of the

magnetic force was desired. Unfortunately, such a discussion

quickly engenders controversy. (A later paper is intended to

address both the electrostatic and magnetic forces in detail—

and show that they also obey the ALT.) However, to avoid

the controversy in this paper, the Whittaker equivalent ki-

netic force is simply assumed since the Whittaker magnetic

force is the only magnetic force which gives rise to torque

forces and torque forces are required to allow the contracted

orbit to conserve both the energy as well as the momentum

in the solar frame.

It is now time to look at the specific details of the Whit-

taker force law for magnetic and kinetic forces. The differen-

tial vector potential is used to simplify the form of the force

equations. That vector potential for a moving charge needed

for magnetic forces is defined as

Ai ¼
Iidsi

rc
; (17)

where i is a subscript which designates either current element

1 or 2, I is the current, ds is the differential circuit element

vector, c is the speed of light, and r is the scalar separation

distance between the two current elements.

The analogous vector potential for a moving mass

needed for a kinetic force is defined as

Ai ¼
ffiffiffiffi
G
p

mivi

rc
: (18)

In this equation the electrical current element, Ids, is

replaced by the scaled mass velocity,
ffiffiffiffi
G
p

mv, to give the ki-

netic force element. In addition, the direction of the force

from two moving masses moving in the same direction has

the same sign as the magnetic force of two opposite sign
charges moving in the same direction. This is similar to the

fact that two unlike charges attract while two masses (like

charge) attract.

In the discussion below about the magnetic/kinetic

forces, the same term “current” is used for either a moving

mass or a moving charge. However, the sign used in the

equations is for the moving masses of the same sign or mov-

ing charges of opposite sign.

After removal of Ampere’s restriction that the force be

along the direction of the line joining the two current ele-

ments, Whittaker obtained the following force law:

F ¼ ðA1 � nÞA2 þ ðA2 � nÞA1 � ðA1 � A2Þn: (19)
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Clearly, this equation satisfies Newton’s action and reaction

requirement, since a reversal of the direction of the unit vec-

tor, n, reverses the direction of the force. Current elements

which lie in the same plane are of most interest in the devel-

opment that follows. In this case, Eq. (19) can be signifi-

cantly simplified. As shown in Fig. 1, the x axis is defined as

the direction of the first current element, A1; the angle the

separation vector makes with the first current element as a;

and the angle that current element A2 makes with respect to

the first current element as b. Using these angles and defin-

ing the y axis for a right handed coordinate system, the force

at current element A2 toward current element A1 becomes

Fx ¼ A1A2 cosða� bÞ; (20)

Fy ¼ �A1A2 sinða� bÞ; (21)

where a positive force is in the positive direction of the coor-

dinate axis.

There are two situations of primary interest. The first is

when the two current elements are aligned in the same direc-

tion, i.e., when b is zero. The force pattern when the currents

are aligned becomes more obvious when separated into a

radial force at A2 (inward positive, toward A1) and a torque

force at A2 (clockwise positive)

Fr ¼ �A1A2 cos2a; (22)

Ft ¼ �A1A2 sin2a; (23)

where Fr is the radial force and Ft is the torque force.

Interestingly, the total magnitude of the force is constant.

When the two current elements are in the same direction and

the angle of translation is orthogonal to the separation vector,

i.e., the value of a is 90�, the force pattern is as shown in

Fig. 2. When the two current elements are in the same direc-

tion but the separation angle a varies the force pattern is as

shown in Fig. 3.

The second situation of interest is when the angle b is

90� rather than zero and the separation angle a varies. This is

shown in Fig. 4. When this happens, the two force compo-

nents in Eqs. (20) and (21) reduce to

Fx ¼ 0; (24)

Fy ¼ �A1A2: (25)

These kinetic force equations (with the appropriate mass ve-

locity inserted) will prove significant in the subsequent de-

velopment of the orbital forces below.

IV. ORBITING MASS AS A GRAVITATIONAL CLOCK
IN A MOVING FRAME

Just as the magnetic forces from a moving electron are

generally small (inverse speed of light dependence) com-

pared with electrostatic forces, the kinetic forces are gener-

ally small compared with the direct gravitational forces. So

the equations below will contain small forces due to the ki-

netic effects. However, for simplicity there are other small

forces and effects which can safely be ignored. For example,

in a previous paper4 it was found that an extra gravitational

scale factor, s, was needed in the numerator of the standard

gravitational force equation, which slightly modified New-

ton’s inverse square law. Since that factor is a simple con-

stant deviating only minutely from one when the orbits in

question are circular, it will be ignored and Newton’s stand-

ard gravitational force equation with its inverse square law

will be used. In addition, a small correction to the gravita-

tional force arises from the action of the gravitational field

generated by the large source mass from its structural energy

upon the kinetic energy component of the orbiting mass

FIG. 1. Geometry of electric/mass currents.

FIG. 2. Magnetic/kinetic force from common out-of-plane velocity.

FIG. 3. Magnetic/kinetic force from common in-plane translational

velocity.
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relative to the source mass. This small term can also be

safely ignored in the selected examples. Finally, the orbiting

velocity of the small mass has a very small refractive bend-

ing (similar to gravitational bending of light) which can be

ignored. The small kinetic forces considered below are the

forces generated by the kinetic energy velocity interaction

between the source mass and the orbiting mass.

At this point, the gravitational and kinetic forces will be

explored. It is the intent to show that the forces display an

apparent relativity for the static situation within the moving

frame and that the operation of a gravitational clock, i.e., one

very small body in a circular orbit around another much

larger body, will behave similar to any other clock moving at

a velocity relative to the reference frame. The orbital period

of the small body can be thought of as a clock. The workings

of this clock, i.e., the forces and momentum changes of the

orbiting mass when the entire clock is given a velocity with

respect to the absolute ether frame will be explored. This

clock is similar to the moon orbiting the earth while both

orbit the sun; or, as was considered in the previous paper1

the GPS satellites orbiting the earth as the earth orbits the

sun. The simplest case will be considered first, i.e., a transla-

tional velocity will be imparted in the direction orthogonal to

the orbital plane of the small body. In addition to showing

that the clock changes as expected with translational veloc-

ity, it will also be shown that the same apparent gravitational

inverse square law applies when the clock units are changed

to match the time scale of the moving clock. After treating

this simpler situation, the more complex case with the trans-

lational velocity in the plane of the small mass orbit will be

treated. The general case is a sine/cosine combination of the

two.

A. Gravitational clock with translation velocity
orthogonal to the orbital velocity

For this first case, the conservation of the momentum

will be considered first. That will be followed by considering

the kinetic forces, i.e., those caused by the common transla-

tional velocity and those caused by the orbital velocity of

the small mass interaction with the central mass translational

velocity. Finally, a look at the total energy will be briefly

considered.

1. Conservation of the momentum

Increased speed causes an increase in the inertial mass

of the orbiting particle. Such an increase must be matched by

a corresponding decrease in the orbit velocity in order to

conserve the momentum. The equation for the velocity is

given by the classical equation modified to include the

imparted mass increase due to the spin velocity itself

v2
s ¼

GMð1� v2
s=c2

0Þ
r

¼ GM

rc2
s

: (26)

In the prior paper, the inertial mass was found to increase by

the velocity scale factor, cs. (A subscript s, for the small

mass, has been used rather than a subscript o, for orbital ve-

locity, to avoid confusion with a zero subscript.) The orbital

frequency in radians is simply given by the velocity divided

by the radius and is thus given by

f0 ¼
ffiffiffiffiffiffiffiffi
GM

r3

r �
cs: (27)

Thus, as a result of the orbit velocity, vs, the frequency of the

stationary gravitational clock actually runs slightly slower

than that classically assigned to it. This is consistent with the

observed decrease in the rate of atomic clocks caused by

their orbital velocity when in orbit around the earth.

Moreover, this mass dependence upon velocity makes it

look like the moving gravitational clock will slow down

exactly the same way an atomic clock is observed to slow

down with velocity. Such is indeed the case. Specifically, if

a translational velocity, vt, is added to the gravitational clock

which is orthogonal to the plane of the orbit velocity, the

mass of the orbiting particle will increase further causing a

further velocity slowing and Eq. (27) for the resultant orbital

frequency becomes

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMð1� ðv2

t þ v02s Þ=c2Þ
r3

r
: (28)

Note, however, that a prime mark has been put on the value

of the orbital velocity. This is because the orbital velocity

itself is decreased by the translational velocity scale factor

(because the translational velocity increases the inertial mass

and the conservation of momentum therefore requires a

decrease in the orbital velocity), i.e.

v0s ¼ vs=ct: (29)

So, written in terms of the original orbital velocity the equa-

tion becomes

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMð1� v2

t =c2Þð1� v2
s=c2Þ

r3

r

¼
ffiffiffiffiffiffiffiffi
GM

r3

r �
ðctcsÞ ¼ f0=ct: (30)

This shows that the gravitational clock has slowed with ve-

locity precisely as an atomic clock would. However, this

cannot be the complete story because here a velocity has

FIG. 4. Magnetic/kinetic force from orbit velocity around a central transla-

tional velocity.
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been added to the large mass as well. Unless the gravitational

force upon the orbiting mass is modified, the orbital radius

cannot remain unchanged when it has a different orbital pe-

riod (frequency).

Assuming, as reviewed above, that the structural mass of

a moving particle decreases and the inertial mass increases, it

is possible to analyze the implications for the change in force

that would cause the gravitational clock to run slower but at

an unchanged distance; i.e., no length contraction in the or-

thogonal direction. (Subsequently to simplify the equations, a

superscript “þ” will be used to indicate the value is increased

by the translational velocity scale factor, a superscript “�”

will be used to indicate that it is decreased by the inverse of

that scale factor, and a superscript “0” to indicate an

unchanged value. When the mass is the inertial mass it will

have a superscript “þ” and when it is the structural mass it

will have a superscript “�”). The force necessary to cause the

desired clock rate decrease without changing the size of the

orbit is affected by the increased inertial mass and the slower

clock rate (increased time intervals). It is given by

F� ¼ mþl0=ðtþtþÞ: (31)

It is assumed that in the moving situation the source mass

creating the moving gravitational field is the reduced struc-

tural mass. Thus, the kinetic energy of the orbiting mass due

to the translational velocity is not acted upon and the struc-

tural mass acted upon is reduced by the translational veloc-

ity. Since the gravitational force of both source and orbiting

mass is reduced by the translation scale factor, it is clear that

the inverse mass dependence in the denominator of New-

ton’s gravitational constant is also reduced—causing an

increase in the constant. This increase is counteracted by the

unit changes for time to cause Newton’s constant to decrease

directly proportional to the translation velocity scale factor.

The result is

F��� ¼ G�M�m�

r0r0
: (32)

Clearly, there is a mismatch between Eqs. (31) and (32). It

remains to consider the additional kinetic force generated by

the kinetic energies of the moving masses. It is similar to the

magnetic force between moving charges.

2. The kinetic force arising from the common
translational velocity

When a translational velocity is added, orthogonal to the

orbital velocity, our gravitational clock should run slower

per Eq. (30) above. But a force mismatch is also found which

is caused by the fact that both Newton’s gravitational con-

stant and the gravitational mass of the source gravity field

are decreased inversely proportional to the translational ve-

locity scale factor. It is now time to include the kinetic (grav-

itomagnetic) force in the analysis. The first step is to note

that Eq. (22) is the applicable kinetic force equation since for

the orthogonal translation the velocity added to the orbiting

mass and the velocity added to the gravitational source mass

are in the same direction and orthogonal to the separation

distance at each point in the orbit, i.e., the angle a is equal to

90�. But, this equation needs to be modified to apply to the

kinetic gravitational forces rather than magnetic forces.

Thus, it is necessary to identify the vector potential grav-

itational equivalent of a vector potential current element for

both the orbiting mass and the source mass. This is done by

assuming the Gaussian choice of electromagnetic units. (The

Gaussian choice directly reflects the relative magnitude of

electrostatic and magnetic forces.) Let the source mass vec-

tor potential current element be

A1 ¼
ffiffiffiffi
G
p

Mvt

rc
: (33)

Note that scaling the mass by the square root of Newton’s

gravitational constant gives the same units as an electric

charge in Gaussian units. For the small orbiting mass, the

translational velocity gives the vector potential current ele-

ment as

A2 ¼
ffiffiffiffi
G
p

mvt

rc
: (34)

Plugging these values into Eq. (22), noting that the value of

a is 90�, and that a positive value indicates a force toward

each other, i.e., is added to the gravitational force, results in

the kinetic (gravitomagnetic) force which is illustrated in

Fig. 2

Fk ¼
ffiffiffiffi
G
p

Mvt

rc

ffiffiffiffi
G
p

mvt

rc
¼ GMm

r2

v2
t

c2
: (35)

When this is added to the classical gravitational force, the

result is

F� ¼ G�M�m�

r0r0
ð1þ v2

t =c2Þ: (36)

This equation now matches Eq. (31) since the last term of

Eq. (36) cancels out two of the negative superscripts. This

shows that the moving gravitational clock slows as needed to

agree with a similar moving atomic clock and it also shows

that the apparent force on a “stationary” mass in the moving

frame still obeys the inverse square law, at least if it lies in

the plane orthogonal to the moving source mass. In addition,

it shows that the divergence between the structural and the

inertial mass of the orbiting particle is, in a sense, the net

cause for the slowing of the gravitational clock—an amount

identical to the rate at which an atomic clock would slow as

a function of velocity.

Since the above forces arose only from the translational

kinetic forces and did not involve the orbital velocity, it is

obvious from Eqs. (31) and (36) that Newton’s inverse square

law of force applies in the plane orthogonal to the movement

of the gravitational clock whether or not the small mass is or-

biting the central mass. The inverse square law of force is

decreased by the first power of the translational velocity scale

factor consistent with the changes in the units of the (inertial)

mass and clock rates of the moving gravitational clock.

Phys. Essays 26, 2 (2013) 167



3. The kinetic force arising from the orbital velocity
interaction with the translational velocity of the
gravitational source

A quick look at the kinetic force interaction between the

orbital velocity, v0s; of the orbiting mass with the translational

velocity, vt, of the central mass is in order. Note that the

translational velocity is orthogonal to the orbital velocity and

the separation vector is orthogonal to both velocities. But,

using Eq. (19) for the force between them shows that this ki-

netic force is always zero since each of the three dot products

in the equation is zero.

4. Conservation of the energy

Because the orbital velocity has slowed and the inertial

mass has increased an equal fractional amount, one would

expect that the orbital kinetic energy would have decreased.

This is indeed the case, but it is not the full story. From Eq.

(15) above the total energy of a moving mass is given as

mic
2 ¼ mgc2 þ miv

2; (37)

where the subscript i designates the inertial value of mass

and subscript g designates the structural value of mass,

which differ for the moving particle by the associated veloc-

ity scale factor. The left hand side of this equation is the total

energy. The first term on the right hand side is the structural

energy and the final term is the kinetic energy. Substituting

the total velocity of the small orbiting mass into the velocity

scale factor and writing this equation in terms of the orbiting

mass before it is put into translation motion, gives

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2

t þ v02s Þ=c2
p ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2

t þ v02s Þ=c2

q

þ mv2
t þ mv02sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðv2
t þ v02s Þ=c2

p : (38)

But this equation can be simplified by using the original or-

bital velocity before the translation velocity was added.

Using Eq. (29), this gives

mc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

t =c2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
s=c2

p ¼ mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

t =c2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

s=c2

q

þ mv2
t þ mv2

s ð1� v2
t =c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
t =c2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

s=c2
p :

(39)

Using the velocity scale factors to simplify results in

mc2ctcs ¼ mc2=ðctcsÞ þ mv2
t ctcs þ mv2

s cs=ct: (40)

The final term of Eq. (40) is the orbital kinetic energy. This

equation shows that the orbital kinetic energy is decreased

by the translational velocity scale factor as expected. How-

ever, that energy is used to supply some of the (nonclassical)

kinetic energy of translation. Thus, like the original struc-

tural energy, orbital energy when translated appears to sup-

ply some of the kinetic energy of translation. Indeed, the

orbital energy (last term of the equation) can be combined

with the structural energy (first term on the right of the equal

sign) and recast Eq. (40) in such a way as to treat the original

orbital energy as part of the structural energy. Thus

ðmcsÞc2ct ¼ ðmcsÞc2=ct þ ðmcsÞv2
t ct: (41)

This equation shows that the structural mass of the orbiting

particle before translation acts as if it has been increased by

the original orbital velocity scale factor. This is quite inter-

esting in that in my modified Lorentz ether theory17 the fun-

damental particles of mass are modeled as spinning

variations in ether density. Thus, Eq. (41) would correspond

to Eq. (37) where their structural energy is primarily com-

posed of internal spin energy.

As expected, the kinetic orbital energy has been

decreased by the inverse of the translational velocity scale

factor but that decrease has supplied some of the (nonclassi-

cal) kinetic energy of translation.

The analysis is now complete for the effects of a transla-

tional velocity orthogonal to the orbital plane of the small or-

biting particle. It is time to analyze the more complex

situation in which the translational velocity is added in the

same plane as the orbital velocity. The general solution is

simply a sine/cosine combination of the two cases.

B. The gravitational clock with a translational velocity
added in the plane of the orbit

The order in which the analysis is done will be changed

a bit from the prior case. First, the conservation of momen-

tum will be considered. Next, the kinetic force between the

orbital velocity and the translational velocity will be

addressed since it is no longer null as it was in the prior case.

Following that analysis, the kinetic force between the orbit-

ing mass and the source mass due to the common transla-

tional velocity will be analyzed. Energy considerations will

be considered last.

1. Conservation of the momentum

In the previous paper,1 the conservation of momentum

was analyzed in some detail. However, very little mathemat-

ics was provided to confirm the stated behavior. For com-

pleteness, it is addressed here with the associated

mathematical equations provided.

When the translational velocity is in the same plane as

the orbital velocity, the small inertial mass of the orbiting

body should vary as a function of the total combined veloc-

ity. And the orbital velocity should vary inversely as the in-

ertial mass so that the orbital momentum is conserved. The

combined velocity scale factor will be given by

c ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

t þ 2vtv0s cos hþ v02s
c2

r
; (42)

where h is the angle between the two instantaneous velocity

vectors.

However as was done in the development above, the or-

bital velocity can be expressed in terms of the original orbital
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velocity before the translational velocity was added using

Eq. (29). This allows the above equation to be factored such

that

c¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� v2

t =c2Þð1� v2
s=c2� 2vtv0s cosh=c2Þ

q
: (43)

Thus, as before the velocity scale factor can be split into the

product of two scale factors, a translational factor and an or-

bital factor

c ¼ ctc
0
s: (44)

These two scale factors are identical to the velocity scale fac-

tors for the orthogonal translation developed above except

for the additional cyclic term in the orbital velocity scale fac-

tor designated with the prime. The translation velocity of the

central mass and the average translational velocity of the or-

biting mass are the same as above. Thus, the average effects

are the same. However, there is a cyclic variation in the or-

bital velocity and therefore in the orbital velocity scale

factor.

Except for very large velocities, the cyclic variation in

the velocity scale factor can be approximated as

Dc ¼ c0s � cs ffi vtv
0
s cos h=c2: (45)

In this equation, the square roots have been approximated,

i.e., terms in the inverse fourth power of the speed of

light have been dropped. This difference between the in-

plane orbital velocity scale factor and the prior orthogonal

orbital velocity scale factor causes a cyclic variation in the

inertial mass and a counteracting cyclic variation in the ve-

locity, which keeps the instantaneous angular momentum

unchanged

Dv0s=v0s ¼ �vtv
0
s cos h=c2: (46)

If the orbiting mass is used as the clock, it means that the

apparent elapsed time will vary in a cyclic fashion as well. If

the elapsed time is measured by the number of cycles of the

orbiting mass, the variation in the time within the orbit will

be given by the integral of the fractional velocity variation.

Clearly, the number of whole cycles is determined by the av-

erage orbital velocity and is unchanged from the orthogonal

solution above—but in both cases the average orbital veloc-

ity is slower after translation by the translation velocity scale

factor. Note that a slower velocity means more time to reach

a given position. The variation of time within an individual

cycle is given by

Ds ¼
ð

vtv
0
s cos h=c2 ¼ ðvt=c2Þ

ð
_xs ¼

vtxs

c2
: (47)

It is now time to explore the relative position of the small

mass in its orbit around the large central mass. When the

small mass (designated by the subscript s) has its orbital ve-

locity adding to the translational velocity, the orbital speed is

slightly slower and when the orbital velocity subtracts from

the translational velocity the orbital velocity is slightly

faster. In both cases, the change in the orbital velocity is due

to the inertial mass change induced by the total velocity and

the requirement that the orbital momentum remains

unchanged. Both the translational velocity and the orbital ve-

locity are given in terms of the original stationary time units,

so the longer time units (increased by the translational veloc-

ity scale factor) of the slower orbital rate need to be applied

to get the distance traveled during a fractional rotation. Com-

puting the x component of position of the orbiting mass as

the time multiplied by the velocity gives

Xs ¼ ctsðvtþ v0s coshÞ ¼ ctsðvtþ _xsÞ ¼ ctsvtþ ctxs: (48)

In this equation, the conservation of momentum causes the

variation in cs and the variation in the spin velocity to

cancel.

However, the position of the large central mass (desig-

nated by the subscript l) will have traveled a variable dis-

tance due to the variable time it takes per Eq. (47) for the

small mass to reach a given angular position. The position

will be given by

Xl ¼ ctðsþ DsÞvt ¼ ctsvt þ
ctv

2
t xs

c2
: (49)

Since only the difference of Eqs. (48) and (49) are of inter-

est, the first term of each equation cancels and there is no

reason to evaluate the elapsed time, s, in terms of the angular

position. The difference between these two values gives the

x coordinate position of the orbiting mass in the moving

frame relative to the large central mass, which is moving at a

constant velocity

Xs � Xl ¼ ctxsð1� v2
t =c2Þ ¼ xs=ct: (50)

From the conservation of angular momentum and the above

results, it is now possible to construct a mapping from the

original frame to the frame centered on the large mass. The

clock frequency in the moving frame runs slower than the

clock in the stationary frame. Thus, the units of time are lon-

ger. This means that a clock reading in the moving frame

will measure a smaller value in the larger units of that frame

than the corresponding clock using the smaller units of the

stationary frame, i.e.

t ¼ T=ct: (51)

From Eq. (50), it is apparent that there is a length contraction

in the direction of the translational velocity in the moving

frame, thus the x coordinate of position in the moving frame

will have a larger value due to the smaller units of measure-

ment in the moving frame, i.e.

x ¼ ctðX � vtTÞ: (52)

But Eqs. (51) and (52) constitute the ST equations which

map measurements from the stationary frame to a moving

frame. Compare these two equations with Eqs. (1) and (2).

But, there is more to learn from this transformation. It is

apparent from Eq. (47) that moving masses could be used to

set remote clocks. First send out equal masses with equal

momentum in the positive and negative x direction and
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reflect them back with that same momentum. If clocks are

set at the reflection points by assuming that 1=2 of the transit

time was used to travel in each direction, a clock bias given

by the negative of Eq. (47) would result, i.e.

Dt ¼ � vtx

c2
: (53)

But this is precisely the same clock bias which results by

assuming that the transit speed of light is isotropic (Einstein

synchronization) in a moving frame. And as shown above in

Eq. (12) this clock bias causes the time transformation of Eq.

(53) to become

t ¼ ctðT � vtX=c2Þ: (54)

But Eqs. (52) and (54) are the LTs from one frame to

another.

Where are we? At this point combining the angular mo-

mentum results from Section IV B 1 with the results in this

section, it is apparent that the orbiting gravitational clock when

given a translational velocity within the orbital plane looks

exactly like it has a natural frame defined by the associated LT

from the “stationary” frame. In this transformed frame, it

appears to have a circular orbit with constant rotation rate.

Note that this is consistent with the SRT claim that the

laws of physics take the same form within different frames.

Where the SRT is inadequate is when measurements are

taken across frames. It is commonly assumed within SRT

that the numerical invariance is in fact also physical invari-

ance. This is not unreasonable when it is not apparent which

frame is the “parent” frame and which is the “child” frame.

But when measurements are taken across frames, for exam-

ple, of the distance to planets orbiting in the sun’s frame

from within the earth’s frame, the assumption of physical

invariance leads to problems. In such situations, it is impor-

tant to recognize an apparent relativity with an associated

ALT which arises naturally from the physical changes with

velocity. Distinguishing between the LT and the ALT

reminds one that there is an underlying reality in which the

true velocities are measured in different units and the true

velocities are not isotropic. This was discussed in the back-

ground section earlier.

2. Kinetic force arising from the orbital velocity
interaction with the central mass translational velocity

Note that in the prior case of the translational velocity

orthogonal to the plane of the small mass orbit, there was no

kinetic force induced by the orbiting mass. However, when

the translational velocity is in the plane of the orbit there is a

kinetic force induced by the orbital velocity.

The kinetic force between the orbital velocity and the

translational velocity of the central mass is of constant mag-

nitude and direction as shown in Fig. 4. This force has two

salutary effects. First, the downward force has a radial com-

ponent of force that compensates for the force variation

induced by the cyclic variation in gravitational mass of the

orbiting object. Second, the downward force has a cyclic

along-track force (torque) on the orbiting object that causes a

cyclic variation in the energy. This cyclic variation in kinetic

energy is required to match the cyclic velocity variation

required to maintain constant angular momentum. The math-

ematical details follow.

The kinetic force in the downward direction is shown

with a bold arrow in Fig. 4. It results from the two mass cur-

rents, which are shown with fine arrows in Fig. 4. From the

Whittaker force equations (24) and (25) and the mass cur-

rents, Eqs. (33) and (34), the force can be written as

Fy ¼ �
GMmvtv

0
s

r2c2
: (55)

This force can be mapped into radial and torque components.

The radial force (positive inward) is given by

Fr ¼
GMmvtv

0
s cos h

r2c2
: (56)

It is tempting to conclude that this radial force is counter-

acted by the decreased gravitational mass caused by the extra

velocity. However, that effect is counteracted by less force

being necessary. Still, there is a counteracting effect due to

the fact that the time over which the normal gravitational

force can act is reduced by the extra velocity. Specifically, in

the equation below s divided by T is the reduction in time

over which the normal gravitational force acts due to the

change in the velocity

Fr ¼ �
GMmg

r2

s
T
¼ �GMmg

r2

vtv
0
s cos h
c2

: (57)

This reduced force is precisely canceled by the radial kinetic

force given in Eq. (56). Thus, the force variation otherwise

induced is entirely cancelled.

The torque force arising from Eq. (55) (positive along

the orbital velocity) is given by

Ft ¼
GMmvtv

0
s sin h

r2c2
: (58)

The integral of this force will cause a changing kinetic

energy for the orbiting small mass. Thus

DE ¼
ð

GMmvtv
0
s sin hds

r2c2
¼
ð

GMmvtv
0
s sin hdh

rc2

¼ �GMmvtv
0
s cos h

rc2
: (59)

In this equation, the force has been integrated along the orbit

path to give the cyclic energy.

Thus, Eq. (58) gives the amount of varying torque force

needed to cause the variation in kinetic energy to be compat-

ible with the conservation of momentum.

This equality is verified by taking the variation of the ki-

netic energy and converting it to the equivalent potential

energy. The kinetic energy variation caused by the variation

in inertial mass (increased by Dc) and variation in orbital ve-

locity squared (decreased by Dc2) results in a net decrease.

Expressing the velocity squared in terms of the potential and

using Eq. (45) result in the following value for the kinetic

energy variation:
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DEk ¼ �miv
02
s Dc ¼ �GMm

r
Dc

¼ �GMmvtv
0
s cos h

rc2
: (60)

This energy variation exactly matches that of Eq. (59) needed

to keep the momentum of the small mass constant as the grav-

itational mass and orbital velocity of the small mass vary.

Note that it averages to zero around one complete orbit.

3. Kinetic force arising from the orbiting mass
translational velocity interaction with the central
mass translational velocity

The kinetic force between the orbiting mass translational

velocity and the translational velocity of the central mass is

illustrated in Fig. 3. As shown, the force has constant magni-

tude but the direction of the force rotates in a direction oppo-

site to that of the orbiting mass. This force is independent of

the orbital velocity and compensates for the flattening of the

orbit in the direction of the translational velocity (which is

also independent of the orbital velocity). Thus, it applies to a

“stationary” mass in the moving frame as well as to a mass

in orbit. Only the first power in the squared ratio of the ve-

locity to the speed of light is retained in the analysis to fol-

low. As in the prior section, this kinetic force is separated

into the radial and torque components.

From the Whittaker force equations above (Note that the

angle, h, is equal to (a�90), which accounts for the change

of sign compared with Eqs. (22) and (23) above.), the radial

kinetic force caused by the common translational velocity is

Fr ¼
GMmv2

t cosð2hÞ
r2c2

: (61)

And the torque kinetic force is

Ft ¼
GMmv2

t sinð2hÞ
r2c2

: (62)

To analyze the effects, it is necessary to determine the gravi-

tational force between two masses which are traveling at the

same translational velocity when they are separated by a dis-

tance in the direction of travel. Plugging in the longitudinal

scale factors for the units of Newton’s gravitational constant,

gives an additional decrease in the value of G due to the

additional length dependence in the numerator. (Two of the

length contraction effects are assumed cancelled by the lon-

gitudinal contraction of the ether distortion itself, which is

caused by motion of the gravitational source mass.) The

result is that the length dependence in the denominator of the

force causes a net increase in the force compared with that of

the transverse force given above in Eq. (32)

F�� ¼ G��M�m�

r�r�
: (63)

This force in the longitudinal direction can be combined

with that in the transverse direction given in Eq. (32) to yield

the general force equation as a function of the angular

position

F���t ¼ G�M�m�

r0r0
1þ ðv2

t =2c2Þ sin2 h
� �

: (64)

In similar fashion, inserting the length dependence with

angle into Eq. (31) also gives an angular dependence which

is needed to keep the orbital period consistent with that of a

moving atomic clock. The force required is given by

F�l ¼
mþl0

tþtþ
ð1� ðv2

t =2c2Þ sin2 hÞ: (65)

Subtracting Eq. (64) from (65) gives the force difference

needed to achieve the in-plane orbital force equivalent (on

average) to that given in Eq. (36) of Section IV B 2 above

for the orthogonal orbit

DF ¼ v2
t

c2
� v2

t

c2
sin2 h: (66)

The first term accounts for the difference in the negative

superscript in the two equations.

This force variation with angle is not particularly easy to

deal with. However, that force variation can be aliased into

an equivalent extra contraction of length in the along-track

direction. The easiest way to model this difference in the lon-

gitudinal force relative to the transverse force is to keep all

units in the force equation in transverse units but model the

increased force by simply doubling the length contraction in

the x direction to get an extra increase in the force in the x
direction. This is accomplished in the following manner:

x0 ¼ r sin h=c2
t ¼ x=c2

t ;

y ¼ r cos h;

r02 ¼ x02 þ y2 ¼ r0r0ð1� 2v2
t sin2 h=c2Þ;

(67)

where r0 is the radius of the circular orbit before the effective

(two times) length contraction in the x component.

Inserting this result into the force equation gives

F ¼ G�M�m�

r0r0
ð1þ 2v2

t sin2 h=c2Þ: (68)

Substituting in the value for the sine squared gives

F ¼ G�M�m�

r0r0
1þ v2

t

c2
� v2

t cosð2hÞ
c2

� �
: (69)

Now, when the radial kinetic force equation (61) is added to

this gravitational force, it simply cancels out the last term

and leaves for the force

F� ¼ G�M�m�

r0r0
1þ v2

t

c2

� �
: (70)

This equation is the same as Eq. (36) showing that the net

effective radial force is the same for a translation in the ra-

dial plane of the orbit as that for a translation orthogonal to

the plane of the orbit. However, the torque given by Eq. (62)

above has still not been addressed.

It turns out that the gravitational force of Eq. (70) is not

toward the center of the gravitational source mass due to the
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longitudinal contraction of the gravitational potential. This

means that the kinetic torque of Eq. (62) is required to con-

vert the inward gravitational force into a force, which is

directed toward the center of the gravitational source. This

can be shown by noting that for a given angle, h, for a parti-

cle relative to the source before the (double) longitudinal

contraction in the x direction is applied per Eq. (66), a new

angle, h0, toward the center of attraction can be computed.

The difference between the two angles is half the difference

between the direction of the gradient, h00, and the direction

toward the center as shown in Fig. 5. Thus

tan h ¼ x=y;

tan h0 ¼ x0=y ¼ ðx� xv2
t =c2Þ=y:

(71)

Using the equation for the tangent of a difference between

two angles, specifically

tanðh� h0Þ ¼ tan h� tan h0

1þ tan h tan h0
: (72)

Now, using a small angle approximation gives

Dh ffi v2
t tan h

c2 1þ tan2 hð Þ ¼ ðv
2
t =c2Þ sin h cos h ¼ v2

t

2c2
sin 2h:

Since the force required to change the direction from h00 to h,

i.e., toward the gravitational source center, is twice this angle

multiplied by the primary gravitational force, the torque

needed is

Ft ¼
GMmv2

t sinð2hÞ
r2c2

: (73)

This is precisely the torque obtained from the kinetic force

per Eq. (62) above.

4. Conservation of the energy

The only difference between the energy for translation in

the plane of the orbit compared with translation orthogonal to

the plane of the orbit is that a cyclic variation of the energy is

present in the former. But that cyclic variation averages out to

zero. The net result is that the average energy is the same for

both the orthogonal and the in-plane translations.

V. CONCLUSIONS

The gravitational clock analysis is complete. It has been

shown above that the Whittaker version of the kinetic (gravi-

tomagnetic) force provides precisely the force necessary to

conserve the energy even as the momentum is conserved as

the inertial mass and orbital speed vary to counteract one

another. Any translation velocity can be formed from the

sine/cosine combination of the two specific translational

velocities analyzed. Thus, any translational direction will

cause the gravitational clock to slow precisely the same as

an atomic clock slows with translation. In addition, it is clear

from the analysis that the conservation of the mechanical

momentum requires that the orbits be contracted in the direc-

tion of the translation precisely the same as that given by the

Selleri transformation (ST) and Lorentz transformations

(LTs). Furthermore, the time in the orbit is adjusted by the

conservation of momentum such that the local time meas-

ured by the angular position of the small orbiting mass would

cause a conversion of the ST into the apparent Lorentz trans-

formation (ALT). Note that the ST and its conversion into

the ALT are summarized by the correspondence of Eqs. (1),

(2), and (12) with the derived orbital equations (51), (52),

and (53).

The net result is that an observer located at the center of

the orbit would see the small mass apparently orbiting at a

constant rate, since the clock bias generated by the conserva-

tion of momentum is precisely the same clock bias which

causes the light from the small orbiting mass to reach the ob-

server at the center in an apparently constant time interval.

And even though the orbit is contracted the apparent force is

always toward the gravitational center and appears to obey

the inverse square law.

It is also significant that the prior arguments for a hidden

component of kinetic energy in a moving particle which is

obtained from a structural energy decrease were confirmed

in as sense by the observation that translation of an orbiting

gravitational clocks engenders a similar conversion of some

of the orbital energy into a hidden component of the kinetic

translational energy. This tends to confirm a spin energy

model for the structural energy and mass of the primary

physical particles.

It remains as a future task to show that almost the same

mechanism applies to the electrostatic and magnetic case of

an electron orbiting a central nucleus. With the notable inclu-

sion of a sign difference and a transit time of the interacting

forces, the analysis of the electromagnetic orbit is expected

to parallel that of the above analysis. The fact that the Whit-

taker kinetic force equation provides precisely the correct

torque forces necessary to conserve the energy strongly

implies that the correct magnetic force is in fact the Whit-

taker magnetic force equation. Thus, the transformation of

the kinetic force into an apparent gravitational force is

expected to explain how the magnetic force appears to be

transformed into an electrostatic force.

FIG. 5. Geometry of the flattened ellipse.
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Further evidence for the results developed above has

already been published in an article18 applying the re-

sults herein to some previously unexplained gravitational

phenomena.
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