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Abstract Both VLBI (Very Long Baseline
Interferometry) and GPS (Global Positioning
System) indicate that earth-based clocks are biased
as a function of their position in the direction of the
earth’s orbital velocity. The evidence for these biases
is discussed, and the result is confirmed by
comparison of earth-based clocks with millisecond
pulsars. These clock biases are precisely such as to
cause the speed of light to appear as ‘‘c’’ in the
earth’s inertial frame. This shows that the speed of
light is not isotropic in the earth’s frame and that the
Lorentz transformation is only an apparent
transformation that results from Selleri’s inertial
transformations combined with clock biases.
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Background and problem
statement

Close to 100 yr ago Einstein (1905) published his
revolutionary paper, subsequently referred to as the

Special Relativity Theory (SRT). Though it is often claimed
(see Will 1986) that the SRT is fact, not theory, a stubborn
few have always maintained that the Lorentz Ether Theory
(LET) provides a viable alternative. Among the prominent
reasons for holding to this alternative is that it gives a
mechanism for clock slowing in place of the simple
mathematical magic of SRT. But, according to Steven
Weinberg (1992), ‘‘naı̈ve mechanism seems safely dead.’’
In fact, he says, ‘‘The final turn away from mechanism in
electromagnetic theory should have come in 1905, when
Einstein’s special theory of relativity in effect banished the
ether and replaced it with empty space as the medium that
carries electromagnetic impulses.’’
Even though regarded as naı̈ve, most physicists will
acknowledge that the LET is observationally equivalent
to SRT. Mansouri and Sexl (1977) give a thorough
derivation of this equivalence. They first discuss differ-
ent methods of clock synchronization. In the SRT they
show that Einstein synchronization (assigning a time
based on an isotropic speed of light equal to c) and
synchronization by slow clock transport are equivalent.
These two methods of clock synchronization are defined
as internal methods of clock synchronization because
they can be carried out entirely within a single inertial
frame. In order to be equivalent to SRT, an ether theory
must use an external synchronization procedure. Ein-
stein or slow clock transport synchronization is used to
synchronize only those clocks stationary within the ether
frame. The clocks in any frame moving with respect to
the ether frame are set to the reading of a clock in the
ether frame when they are momentarily adjacent to
them. An alternate external solution is to assume the
speed of light remains isotropic only in the absolute
ether frame and to use the ratio of the outbound and
inbound speed relative to the moving frame to set the
remote clock. (As Mansouri and Sexl (1977) indicate, the
most probable absolute frame would be that defined by
an isotropic temperature of the cosmic background
radiation.) Either of the external synchronization
procedures described above leads to the following
transformation between the ether frame and any frame
moving (in the instantaneous direction X with velocity
V) with respect to it.

t ¼ T

c
ð1Þ

x ¼ cðX � VTÞ ð2Þ
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where: c ¼ 1
ffiffiffiffiffiffiffiffi

1�V2

c2

p ; X, T and V are the direction of the

moving frame, the time, and the velocity in the ether frame
respectively; and x and t are the direction and time in the
moving frame.
Equation (1) shows that the reading of a clock in the
moving frame will be smaller because the slower running
clock has larger units of time. Equation (2) shows that the
reading of a ruler measuring distance will be larger because
the units of length in the moving frame are smaller. The
reverse of the above transformation is given by:

T ¼ ct ð3Þ

X ¼ 1

c
ðxþ vtÞ ð4Þ

Note that the velocity measured in the two frames is dif-
ferent. The larger time unit (slower clock) and the shorter
length unit in the moving frame mean that the measured
velocity in the ether frame is smaller than it is in the
moving frame.

V ¼ v

c2
ð5Þ

In a footnote, Mansouri and Sexl (1977) acknowledge that
Tangherlini had previously considered the transformation
given in Eqs. (1) and (2). The most complete discussion of
the transformation, its inverse and successive applications
of it, is found in Selleri (2001), who calls it an inertial
transformation. I will subsequently refer to it as the Selleri
transformation.
When the Selleri transformation, above, is compared to the
Lorentz transformation used in SRT, it is found that the
position transformation is identical. Only the time trans-
formation differs in the two theories. Specifically, the
Lorentz time transformation is given by:

t ¼ cT � c
VX

c2
ð6Þ

Taking the difference between Eqs. (3) and (6) reveals that
the only difference between the Selleri and Lorentz
transformations is a bias or clock offset given by:

Dt ¼ ðc� 1

c
ÞT � c

VX

c2
ð7Þ

But when this bias is expressed in the units of position,
time and velocity of the moving frame, using Eqs. (3), (4),
and (5), it becomes:

Dt ¼ � vx

c2
ð8Þ

Thus, a simple clock bias as a function of position converts
the Selleri transformation into an apparent Lorentz
transformation. Furthermore, by using either Einstein or
slow clock transport to synchronize the clocks in the
moving frame (in place of the absolute external synchro-
nization), the clocks are automatically biased by the pre-
cise amount required to convert the Selleri transformation
into the Lorentz transformation. Biasing the clocks by the

amount given in Eq. (8) causes the nonisotropic speed of
light in the earth’s frame to appear as if it is isotropic.
So what is the problem? Setting a clock with or without a
bias presents no apparent problem. It would seem that
SRT and LET are completely equivalent. Indeed, Mansouri
and Sexl (1977) reach that conclusion and state, ‘‘We ar-
rive at a remarkable result that a theory maintaining
absolute synchronization is equivalent to special relativ-
ity.’’ (Italics were present in the original.) Of course,
Mansouri and Sexl (1977) go on record as preferring the
SRT because the alternative ‘‘destroys the equivalence of
all inertial frames.’’ So is it a matter of preference? Are
those of us who prefer the LET simply naı̈ve? A careful
analysis of clock behavior near the earth provides a
scandalous answer to these questions.
Specific experimental evidence is cited from VLBI (Very
Long Baseline Interferometry), from GPS (Global Posi-
tioning System) and from millisecond pulsars which
demonstrate significant problems with the SRT. VLBI
data show that even biasing a clock in the direction of
the velocity vector can lead to problems when the
direction of that velocity vector changes. GPS and milli-
second pulsar data show that, unlike LET, the SRT re-
quires that the ‘‘proper frequency,’’ i.e. clock rate, in the
earth’s frame differ from the ‘‘proper frequency’’ in the
sun’s frame. However, while setting a clock with or
without a bias may not be a problem, a physical clock
cannot simultaneously run at two different rates. One can
imagine that a constant rate difference might simply be a
matter of definition; but, clearly, a cyclical rate difference
is a physical impossibility. A common solution to the
clock bias and clock rate problems will be offered—but it
is a scandalous solution.

The VLBI aberration problem

To illustrate the VLBI problem, an idealized experimental
setup is postulated. One VLBI receiver is located on the
equator precisely at a longitude such that it is 6:00 AM at a
time when the earth is at the winter solstice. This means
that the direction of this VLBI station from the center of
the earth is in the same direction as the earth’s orbital
velocity vector. Our second VLBI station is also located on
the equator but 180� of longitude away, i.e., at 6:00 PM.
Both are observing a quasar in a direction opposite to that
of the sun, i.e., it is orthogonal to the velocity vector. In
this geometry, the two stations are thus separated in
distance by the earth’s diameter. The fact that extended
common observation of the quasar is impossible because
of the earth’s rotation is part of the idealization—it is
assumed that common observation is possible for this
geometry.
The VLBI experiments (when adjusted for our idealiza-
tion) agree well with the results predicted by Einstein
(1905) in section 7 of his classical paper, ‘‘On the elec-
trodynamics of moving bodies.’’ Specifically, the Lorentz
transformation leaves the ray direction and the wave front
direction orthogonal for an observer stationary in the
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moving frame. This is verified by the fact that the obser-
vations can be used to solve for quasar direction using
either the earth’s inertial frame or the sun’s inertial frame.
The two frames are linked by the Lorentz transformation
of the coordinates and time and by the electromagnetic
transformation for the received light. The result is that in
the earth’s frame the expected aberration of the wave front
is detected, i.e., the light arrives at the forward (6:00 AM)
receiver about 4 ls sooner than at the aft (6:00 PM)
receiver. The 4 ls arise from a minus 2-ls bias at the
forward location and a plus 2-ls bias at the aft VLBI
position. These biases are a result of the clock bias term of
Eq. (8) when internal synchronization is used. However,
when the results are processed using the sun’s barycentric
frame, there is no wave front aberration; and the time of
arrival is measured as simultaneous. (While it is
impossible to identify particular waves in the incoming
radiation, the correlation of the noise amplitude is the
fundamental measurement and is sufficient to determine
the direction of arrival.)
The VLBI measurements are routinely processed using the
sun’s barycentric frame. This avoids the aberration prob-
lem because the bias term given by Eq. (8) is removed in
the process of mapping time from the earth’s frame back
to the sun’s barycentric frame. Of course, there are other
terms in the clock mapping which account for the geo-
metric path differences and the gravitational potential
differences. A description of the mapping from earth
coordinate time to the sun’s barycentric frame can be
found in many places. Thomas (1974 and 1971) provides
some of the clearest descriptions. In the first of these
references, Eq. (10) on page 429 gives the two clock
adjustment terms required to map to the sun’s barycentric
frame that are due to the clock’s position and velocity
relative to the center of the earth. Specifically,

Dt ¼ 1

2c2

Z

½2/eð~xÞ � v2�dt �~ve �~x
c2

ð9Þ

The first term is simply the clock adjustment needed to
account for the effects of the earth’s gravitational potential
and velocity relative to the center of the earth. The second
term is precisely equal to the bias given in Eq. (8). On page
431, Thomas (1971 and 1974) claims that the second
periodic term is never greater than about 2 ls and is
essentially diurnal, since the earth’s velocity vector chan-
ges very little over one day. He further states, ‘‘This term
corresponds to the special relativity clock synchronization
correction that accounts for the fact that simultaneous
events in one frame (a ‘‘solar system frame’’) are not
necessarily simultaneous in a frame (a ‘‘geocentric frame’’)
passing by with velocity~ve:’’ Thus, this second term would
not be present if the external synchronization of the LET
were used in place of the internal synchronization of the
SRT when synchronizing clocks on the earth.
In the context of VLBI, Thomas (1971 and 1974) identifies
the difference in the second term at two sites as the clock
synchronization term or the aberration term. In Eq. (17)
on page 434, he indicates that it has a maximum value of
about 4 ls. Clearly, the tilting of a telescope on the earth

for the aberration of an incoming ray is required no matter
which frame is used. However, in the earth’s frame, the
wave front and the incoming ray are orthogonal to one
another when the SRT synchronization is used to set the
clocks. In the sun’s frame, the wave front as observed by
the VLBI stations is not orthogonal to the incoming ray
and it does not see any aberration of the incoming wave
front. In the sun’s frame, the aberration effect is clearly
analogous to the classical falling raindrop description. The
ray bending is caused by the composition of the velocities.
Just as rain falling in layers, no bending of the layers would
occur for a moving observer. The wave fronts, in this case,
are not orthogonal to the direction of fall that a moving
observer would see.
If wave-front aberration in the earth’s frame were real, as
indicated by Einstein’s special relativity theory (SRT),
another problem would arise that seems to suggest an
inconsistency in the theory. From the observations over a
one-year interval, we know that the real direction of the
quasar is exactly orthogonal to the earth’s velocity vector
at the winter solstice. If the light in the wave front travels
at the speed of light, how can part of the wave front arrive
early and part of the wave front arrive late? This contra-
dicts the SRT claim that the speed of light is always given
by the constant, c. The only solution to this problem that
even appears to be consistent with SRT is to call upon
Minkowski’s claim that time and position in the direction
of the velocity has been interchanged. However, such a
claim clearly relies upon magic. While it was indicated
above that there is no apparent problem in setting a clock
with any arbitrary bias, it does create a problem if that bias
undergoes a cyclic variation as a function of a changing
velocity vector.
The alternative explanation is that wave-front bending is
not real and that clocks on the earth simply have a bias as
a function of their position relative to the along-track
velocity vector of the earth. This bias results from using
Einstein or slow clock transport to synchronize the clocks
rather than the external synchronization consistent with
LET. So, is wave front aberration in the earth’s frame real
or are our clocks biased? Do we have magic (SRT) or
mechanism (LET)?

The GPS clock problem

GPS presents us with a different problem. As is reasonably
well known, GPS, a navigation satellite system developed
by the U.S. Department of Defense, provides a highly
accurate means for determining both position and time
anywhere on the earth and its vicinity. But GPS clocks
(and even earth-bound clocks) present us with a problem
that is not well known—and the proposed solutions to that
problem are clearly incorrect.
The GPS clocks do show, as expected, that moving clocks
run slower and that clocks also run slower with lower
gravitational potential. The GPS clocks are adjusted to run
slow before launch into orbit to account for the fact that
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the earth’s gravitational potential at the nominal orbital
height makes them run faster. This faster clock rate is
partially offset by the effect of the nominal circular orbital
speed of the satellites.
There are two interesting interactions between the effects
of gravitational potential and the effects of speed on the
clock rate. First, at mean sea level, all clocks on the earth
run at the same rate. It turns out that the spin of the earth
causes it to bulge out at the equator such that the gravi-
tational potential is greater. (Clocks at the equator are
farther from the center of the earth.) The effect upon clock
rate of this greater potential at the equator and the effect
upon the clock rate of the spin velocity at the equator
cancel each other exactly. So, the clock rate is the same as
the clock rate at the poles.
The second interaction of gravitational potential and speed
upon clock rate occurs due to the eccentricity of the GPS
orbits. At perigee, the lower gravitational potential causes
the GPS clocks to run slower than nominal. Also, at
perigee the satellites are moving faster than nominal and
this also causes the GPS clocks to run slower—by exactly
the same amount. It seems that energy is what causes the
clocks to run at different rates. Increased gravitational
potential energy causes clocks to run faster. Increased
kinetic energy (speed) causes clocks to run slower.
So what is the clock problem? The problem is, contrary to
expectations, clocks on the earth do not seem to be
affected by the sun’s gravitational potential. Why not? For
earth-bound clocks, the problem has been described as the
‘‘noon-midnight’’ problem. Clocks at noon are closer to
the sun by the diameter of the earth than clocks at mid-
night. Thus, one would expect that the noon clocks would
run slower than the midnight clocks due to the sun’s
gravitational potential; yet this is not observed.
Banesh Hoffmann (1961) suggested a solution to the
noon-midnight problem in an article titled ‘‘Noon-
Midnight Red Shift.’’ The article claims the gravitational
potential effect is missing because a relativistic Doppler
effect cancels it. Thus, Hoffmann (1961) says that, like the
clocks at sea level, there is a cancellation of velocity and
potential effects. In a nutshell, he claims that, because the
point on the earth closest to the sun and the point on the
earth farthest from the sun move around the sun at
different velocities, they will get different clock effects
from their orbital speed around the sun.
It is true that a clock which orbited the sun once per year
at the radius of earth’s noon would have the same clock
rate as a clock which orbited the sun once per year at the
radius of earth’s midnight, i.e., the gravitational potential
difference would be canceled by the speed difference.
However, Hoffmann’s explanation cannot be valid. It is
contradicted by the behavior of the GPS clocks. The dif-
ference in the sun’s gravitational potential upon the GPS
clocks at their point closest to the sun and farthest from
the sun (a difference in distance of approximately four
times the earth’s diameter) seems to have no effect upon
the GPS clocks. Clearly, the satellite orbital points closest
and farthest from the sun do not orbit about the sun at
different speeds. The planes of the GPS satellite orbits do
not rotate as the earth orbits the sun. Thus, all points in

the satellite orbit travel around the sun at the same
velocity (absent precession effects). The fact that the spin
axis of the earth does not change as the earth orbits the
sun should have been sufficient to negate Hoffmann’s
explanation. The rotation of the noon-midnight point on
the earth does not imply that the earth’s inertial frame
undergoes an annual rotation. Some other explanation for
the missing effect is needed.
An alternative attempt at an explanation can be found in
the literature. A paper by Ashby and Bertotti (1986) titled,
‘‘Relativistic effects in local inertial frames,’’ claims that
the acceleration of free-fall induces a fictitious gravita-
tional field that cancels out the real field. An easier to read
version of the same argument by Ashby and Spilker (1996)
is found in a comprehensive GPS book.
The problem with the Ashby and Spilker (1996) and the
Ashby and Bertotti (1986) argument is with their use of the
equivalence principle. Note the quotation from page 686 of
Ashby and Spilker (1996).

The principle of equivalence implies that an
observer in free fall in the gravitational field of the
solar system cannot sense the presence of external
gravitational fields. Although at the instantaneous
location of the freely falling observer there is a
gravitational field of strength �rU (force per unit
mass), this field produces an acceleration A ¼ �rU
of the falling observer. Because of this acceleration,
an additional fictitious gravitational field –A is
induced in the observer’s reference frame. The two
fields—the real one and the induced one—cancel
each other; the net field strength at the observer’s
location is zero. This implies that the gravitational
potential in the neighborhood of the freely falling
observer cannot have any terms linear in the spatial
coordinates. Only quadratic terms can sur-
vive—these are tidal terms. The tidal terms asso-
ciated with these residual’s effects are negligible in
the GPS.

It is the last two sentences of this quote, which are at issue.
Both Michael Friedman (1963) in ‘‘Foundations of space-
time theories’’ and Ciufolini and Wheeler (1995) in
‘‘Gravitation and inertia’’ tell us that the equivalence
principle specifically holds not over a local region but
rather over an infinitesimal region. Let me quote from
Friedman (1963; p. 202) at some length.

Standard formulations of the principle of equiva-
lence characteristically obscure this crucial dis-
tinction between first-order laws and second-order
laws by blurring the distinction between ‘‘infini-
tesimal’’ laws, holding at a single point, and local
laws, holding on a neighborhood of a point. They
lose the distinction between the structure of the
tangent space Tp and the configuration of the tan-
gent spaces Tq for q in a neighborhood of p. (This is
one place where the physicist’s casual attitude
toward the ‘‘infinitesimal’’ gets him into real
trouble!) What the principle of equivalence clearly
says, then, is that special relativity and general
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relativity have the same ‘‘infinitesimal’’ structure,
not that they have the same local structure.

Clearly over an extended region (neighborhood), the gra-
dient of the potential cannot be cancelled precisely simply
by using the equivalence principle. On page 14 of Ciufolini
and Wheeler (1995) they say of the weak equivalence
principle, ‘‘The principle can be reformulated by saying
that in every local, nonrotating, freely falling frame, the
line followed by a freely falling test particle is a straight
line.’’ To clarify this point further, another quote from
Friedman (1963; p. 199) is given.

Freely falling, nonrotating, normal reference frames
(that is, local inertial frames) look just like special
relativistic inertial frames along the trajectory r to
which they are adapted... Freely falling frames fol-
low geodesics of the unique connection D, the very
same connection that figures in the laws of motion
and the electrodynamic field equations. The van-
ishing of the components of this connection along r
yields the special relativistic equations for an
inertial frame.
It must be emphasized that this equivalence holds
only on a single trajectory r. At finite distances
from r nonvanishing Ci

jk0s appear. Thus, although
physics texts often claim that freely falling frames
are ‘‘locally’’ equivalent to inertial frames, this
assertion is strictly false if ‘‘local’’ has its usual
mathematical meaning: local = on some neighbor-
hood... Freely falling frames are only ‘‘infinitesi-
mally’’ equivalent to inertial frames: only at a single
point or on a single trajectory.

Ashby and Bertotti (1986) and Ashby and Spilker (1996)
have explained the absence of differential clock effects
upon the GPS satellites from the sun’s gravitational
potential as due to the equivalence principle. Nevertheless,
they err by applying a result that is valid only over an
infinitesimal area to a large region. So Ashby and Bertotti
(1986) and Ashby and Spilker (1996) have failed, like
Hoffmann (1961), in providing an explanation for the
missing differential effect of the sun’s gravitational
potential upon clocks in the vicinity of the earth. Some
other explanation for the missing effect is still needed.
There is another way to see that the argument by Ashby
and Bertotti (1986), and Ashby and Spilker (1996) cannot
be correct. Specifically, they claim that in the earth’s frame,
the sun’s gravitational potential does not contribute any
clock terms linear in the spatial coordinates. However, this
is equivalent to the claim that the clocks run at a different
rate when expressed in the earth’s frame than the rate at
which they run when expressed in the sun’s frame. Clearly
in the sun’s frame, the clocks located at different distances
from the sun run at different rates as a function of the
sun’s gravitational potential, which does have a linear
dependence on the spatial coordinates. If clocks actually
could run at different rates in the two frames, the clock
readings in the two frames would suffer either a secular or
periodic divergence. Now the mapping from the earth’s
frame to the sun’s frame as shown above in Eq. (9) does, in

fact, show that a periodic divergence between the clocks
exists. Nevertheless, such a divergence cannot be due to a
real clock-rate difference since clocks are physical objects
that cannot simultaneously run at two different
rates—especially at cyclically different rates. The cyclical
mapping term in Eq. (9) must then be due to ascribing an
improper rate to the clocks in the earth’s frame.

Millisecond pulsars as clocks

It turns out that the relationship between clocks on the
earth and clocks in the sun’s frame are needed for many
different reasons. Distant pulsars, which have pulse rates
of hundreds of pulses per second, act as extremely stable
clocks with a slow but very precise change in frequency as
they loose energy. These clocks, external to the solar
system, can be compared to clocks on the earth. Their
stability rivals the very best clocks on the earth. Charles
M. Hill (1995) has reported results comparing the clocks
on the earth to millisecond pulsars. This comparison
clearly reveals the source for the cyclic clock biases
described above. Specifically, in the sun’s frame, the vector
sum of the earth’s orbital velocity and the earth’s spin
velocity causes a cyclic clock rate term which integrates
into a cyclic clock bias as a function of the along track
distance from the earth’s center. (Though not addressed
here, the clocks in the GPS satellites would also suffer
cyclic clock-rate terms as a result of the vector sum of the
satellite orbit velocity with the earth’s orbit velocity.) Note
that in the sun’s frame these cyclic clock disturbances are
properly recognized and removed in the process of
determining a correct time within the sun’s barycentric
frame. Like the cyclic clock-rate error, which occurs as a
result of ignoring the sun’s gravitational potential, this
velocity product (in the sun’s frame) gives a clock rate
error that is ignored in the earth’s frame.
As Hill (1995) describes, the pulsar data reveals a diurnal
variation in the clock rate of about 300 ps s peak-to-peak.
The noon second is about 300 ps shorter (frequency
higher at noon) than the midnight second because of the
product of the earth’s orbital and spin velocities at the
equator. The term causing this clock rate variation comes
from the squaring of the vector addition of the two
velocities. It is given by:

Df ¼ vevs

c2
cos h ð10Þ

where the ‘‘e’’ subscript designates the orbital velocity, the
‘‘s’’ subscript the spin velocity, and h is the angle between
the earth’s orbital velocity and the earth spin velocity at
the clock. Plugging in the values gives a clock rate peak
magnitude of 153 ps s or 2.1 ls per radian of the earth
rotation rate. Clearly, the cosine term integrates to a value
of one for a single quadrant of rotation. The result directly
corresponds to the bias term given in Eq. (8) above.
The difference in sun’s gravitational potential causes a
clock rate term given by:
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Df ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2GM

ðra � re cos /Þc2

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2GM

rac2

r

ffi �GM

rac2

re

ra
cos / ð11Þ

where the ‘‘a‘‘ subscript designates the orbital radius, the
‘‘e‘‘ subscript the earth radius and / is the angle between
the earth radius to the clock and the orbital radius of the
earth. Plugging in the values gives a clock rate peak
magnitude of 0.42 ps s (365 times smaller than the velocity
cross product term) or 2.1 ls per radian of the earth
orbital rate. The sign of this gravitational term is opposite
to that of the diurnal term. (The frequency is lower at
noon.) It causes the diurnal period of one sidereal day,
which results from Eq. (10) to become a period of one
solar day. Again, the result clearly corresponds to the bias
given in Eq. (8) above. In the earth’s frame, both clock rate
terms are ignored. It is by ignoring these cyclic rate terms
in the earth’s frame that the clock biases are generated,
which cause the speed of light to appear as isotropic.
The point of the above is worth emphasizing again. Clocks
external to the solar system (millisecond pulsars) can be
compared to clocks on the earth. Since clocks run at a
unique rate, the difference in the external clocks and the
earth-bound clocks can provide us with the unique
knowledge of the true clock rate of clocks on the earth. The
values obtained show that a cyclic clock rate occurs which
integrates into a cyclic clock bias. The cyclic clock rate
arises from two sources including (1) the product term of
the spin velocity combined with the orbital velocity, and
(2) the differences in the gravitational potential of the sun
at the clocks’ position compared to that at the center of the
earth. When the earth’s frame is used, it is easy to ignore
the composite velocity term because the orbital velocity is
removed. (But even though it is easy to ignore, removing it
assigns an erroneous cyclic clock rate to the clocks
according to the millisecond pulsars.) However, the
absence of the second cyclic term, due to the gradient of
the sun’s gravitational potential, cannot be explained by
SRT when the earth’s frame is used. As we saw above, two
faulty attempts have been made to explain its absence. The
millisecond pulsars testify to its presence, and it causes the
clock bias value to have a cyclic period of one year such
that the bias always remains a function of the distance in
the direction of the changing orbital velocity vector.

Conclusion

When the various clock measurements taken in the vicinity
of the earth are processed in the sun’s frame, it becomes
apparent that the composite velocity and the sun’s gravi-
tational potential combine to generate a diurnal variation
in the clock rate which results in diurnal clock biases.
Clearly, these cyclic clock biases must be removed before a
common time is obtained in the sun’s frame or before an
isotropic light speed in the sun’s frame is obtained. Inter-
estingly, if these biases were not removed, the speed of light

in the vicinity of the earth, even in the sun’s frame, would
appear to be isotropic relative to the earth rather than the
sun. If the LET synchronization procedure were used on the
earth, the biases would be removed and the speed of light in
the vicinity of the earth would remain isotropic relative to
the sun. However, the SRT synchronization process
assumes the speed of light is isotropic relative to the earth.
As a result, it ignores the physical processes which give rise
to the cyclic clock biases, assigns an improper rate to the
clocks, and as a result retains the clock biases—but does
not recognize them as such. Nevertheless, the clocks cannot
run at a different cyclical rate just because we have chosen
arbitrarily to process the data in a different frame.
At least one other point needs to be made regarding the
rate at which clocks run. Specifically, the definition of
‘‘proper time’’ and ‘‘proper frequency’’ versus ‘‘coordinate
time’’ and ‘‘coordinate frequency.’’ One critic claims that
the clock problems discussed above do not arise if we use
coordinate frequency rather than proper frequency.
However, according to Ciufolini and Wheeler (1995), p.
100, the mapping from proper time to coordinate time is
simply the adjustment of the clock to account for the
difference in the gravitational potential. Clearly, moving
from the proper time to the coordinate time is simply a
mathematical adjustment to the clocks and has no impact
on the physics of the clock comparisons described above.
Using the SRT, no proper explanation for the apparently
missing effect of the sun’s gravitational potential upon the
clocks in the earth’s frame can be found. However, LET
shows us that the same gradient of the potential (force),
which causes the velocity vector of the earth to change
direction, also causes the direction of the clock biases in
the vicinity of the earth to be changed so as to remain
aligned with the velocity vector. This effect is undoubtedly
common to all gravitational potentials, i.e., it also applies
to the effect of the moon’s potential upon the earth and to
the galactic potential upon the sun.
The importance of the above results is not that clocks on
the earth should be treated in a different manner. It is in
fact very convenient (and even amazing) that by ignoring
the effect of the sun’s gravitational potential (and the
composite velocity in the sun’s frame) we can cause the
apparent speed of light to remain isotropic on the earth
even as its velocity changes direction. The importance of
the result is that the clock behavior in the sun’s frame
reveals the mechanism underlying the effect. This allows
us to distinguish between the magic of SRT and the
mechanism of LET. The two are not equivalent. LET can
correctly explain the effect of the sun’s gravitational po-
tential and allow the clocks to run at a single unique rate.
SRT cannot explain the missing effect from the sun’s
gravitational potential and incorrectly assigns multiple
rates to the same clock in the same identical environment.
SRT is clearly incorrect. Such a conclusion is, of course,
scandalous.
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